Question

Calculate the standard molar Gibbs free energy change (DeltaGrxn0) at 298 K and at 400 K...

Calculate the standard molar Gibbs free energy change (DeltaGrxn0) at 298 K and at 400 K for the following reaction (the cyclotrimerization of ethene to benzene), assuming that all heat capacities are independent of temperature:

                                    3 C2H4(g)   ®   C6H6(g) + 3 H2(g).

Homework Answers

Answer #1

Hf = Heat of formation and Sf = Entropy of formation

C2H4 : Hf = 52.26 kJ/mol, Sf = 219.56 J/K.mol and Gf = 68.15 kJ/mol (at 298 K)

C6H6 : Hf = 49 kJJ/mol ; Sf = 173.3 J/K.mol ; Gf = 124.3 kJ/mol (298 K)

H2 : Hf = 0 ; Gf = 0 ; Sf = 130.68 J/K.mol

Delta Hf of reaction = Hf C6H6 - 3* Hf C2H4 = -107.75 kJ/mol

Delta Sf of reaction = Sf C6H6 + 3*Sf H2 - 3*Sf C2H4 = -93.34 J/K.mol

Delta G = Delta Hf - T * delta Sf

At 298 K : Delta G = -79.73 kJ/mol

At 400 K : delta G = -70.4 kJ/mol : Here we have assumed that Hf and Sf do not vary with temperature.

Verify the data for 298 K by using the Gf values at 298 K for 3 gases.

Delta Gf 298 K = Gf C6H6 - 3* C2H4 = -80.15 kJ/mol which is approx same as calculated.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Diamond a. At 298 K, what is the Gibbs free energy change G for the following...
Diamond a. At 298 K, what is the Gibbs free energy change G for the following reaction? Cgraphite ->  Cdiamond b. Is the diamond thermodynamically stable relative to graphite at 298 K? c. What is the change of Gibbs free energy of diamond when it is compressed isothermally from 1 atm to 1000 atm at 298 K? d. Assuming that graphite and diamond are incompressible, calculate the pressure at which the two exist in equilibrium at 298 K. e....
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) +...
1.      Calculate the standard free energy change at 500 K for the following reaction. Cu(s) + H2O(g) à CuO(s) + H2(g) ΔH˚f (kJ/mol) S˚ (J/mol·K) Cu(s)    0    33.3    H2O(g)    -241.8    188.7    CuO(s)    -155.2    43.5    H2(g)     0    130.6 2.      When solid ammonium nitrate dissolves in water, the resulting solution becomes cold. Which is true and why? a.      ΔH˚ is positive and ΔS˚ is positive b.      ΔH˚ is positive and ΔS˚...
A. Using given data, calculate the change in Gibbs free energy for each of the following...
A. Using given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298K under standard conditions. 2H2O2(l)→2H2O(l)+O2(g) Gibbs free energy for H2O2(l) is -120.4kJ/mol Gibbs free energy for H2O(l) is -237.13kJ/mol B. A certain reaction has ΔH∘ = + 35.4 kJ and ΔS∘ = 85.0 J/K . Calculate ΔG∘ for the reaction at 298 K. Is the reaction spontaneous at 298K under standard conditions?
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity...
± Gibbs Free Energy: Temperature Dependence Gibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H−TS where H is enthalpy, T is temperature, and S is entropy. The chemical reaction that causes aluminum to corrode in air is given by 4Al+3O2→2Al2O3 in which at 298 K ΔH∘rxn = −3352 kJ ΔS∘rxn = −625.1 J/K Part A What is...
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm...
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm for all species. For the reaction C2H6(g)+H2(g)↽−−⇀2CH4(g) the standard change in Gibbs free energy is Δ?°=−69.0 kJ/mol. What is ΔG for this reaction at 298 K when the partial pressures are ?C2H6=0.300 atm, ?H2=0.500 atm, and ?CH4=0.950 atm?
The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar...
The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar Gibbs energy when benzene is heated from 25C to 45C.
Given the following information, calculate the standard Gibbs free energy of the reaction at 1455 K....
Given the following information, calculate the standard Gibbs free energy of the reaction at 1455 K. State if the reaction is spontaneous or nonspontaneous followed by the temperature at which the reaction switches spontaneity if applicable. CaCO3(s) --> CaO(s) + CO2(g) Given: Δ°H = 179.2 kJ , Δ°S = 160.2 J/K
Calculate the change in the molar Gibbs energy of hydrogen gas when its pressure is increased...
Calculate the change in the molar Gibbs energy of hydrogen gas when its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.
Calculate the standard Helmholtz energy of formation, ΔfA, of CH3OH(l) at 298 K from the standard...
Calculate the standard Helmholtz energy of formation, ΔfA, of CH3OH(l) at 298 K from the standard Gibbs energy of formation and the assumption that H2 and O2 are perfect gases.
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm...
For a gaseous reaction, standard conditions are 298 K and a partial pressure of 1 atm for all species. For the reaction N2(g) + 3H2(g) <--> 2NH3 (g) the standard change in Gibbs free energy is ΔG° = -69.0 kJ/mol. What is ΔG for this reaction at 298 K when the partial pressures are PN2= 0.250 atm, PH2 = 0.450 atm, and PNH3 = 0.800 atm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT