Question

A particle with charge of 22.5 µC is placed at the center of a spherical shell...

A particle with charge of 22.5 µC is placed at the center of a spherical shell of radius 28.0 cm.

(a) What is the total electric flux through the surface of the shell?

(b) What is the total electric flux through any hemispherical surface of the shell?

(c) Do the results depend on the radius?

(d) Explain your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with a charge of -60.0 nC is placed at the center of a nonconducting...
A particle with a charge of -60.0 nC is placed at the center of a nonconducting spherical shell of inner radius 20.0 cm and outer radius 36.0 cm. The spherical shell carries charge with a uniform density of -2.71 µC/m3. A proton moves in a circular orbit just outside the spherical shell. Calculate the speed of the proton.
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell...
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell 28 cm in radius. a) What is the surface charge density on the outer surface of the shell? Express your answer using two significant figures. b) What is the electric field strength at the shell's outer surface? Express your answer using two significant figures.
A.) A point charge of +5.56 ?C is located at the center of a sphere with...
A.) A point charge of +5.56 ?C is located at the center of a sphere with a radius of 12.8 cm. Determine the electric flux through the surface of the sphere. B.) A -2.87 ?C charge is placed at the center of a conducting spherical shell, and a total charge of +8.00 ?C is placed on the shell itself. Calculate the total charge on the outer surface of the conductor. C.) A 7.59 ?C point charge is placed at the...
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of...
1. A 30 cm radius hollow spherical conductive shell of has a surface charge density of 10 µC/m2, a point charge Q1 is in its center. Find the electric flux through the spherical surface centered at Q1: a. if the value is Q1= +3.5x10-6 C charge b. if the value is Q1= -2.5x10-6 C charge c. What would be the electric field in each case? Please explain how you got the answer, having trouble understanding this and can't seem to...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell with a radius of 12.0 cm. (i) What is the total electric flux about the sphere shell? (ii) What is the magnitude of the electric field at a distance 0.30 m from the center?
A particle with a charge of −60.0 nC is placed at the center of a nonconducting...
A particle with a charge of −60.0 nC is placed at the center of a nonconducting spherical shell of inner radius 20.0 cm and outer radius 22.0 cm. The spherical shell carries charge with a uniform density of −1.04 μC/m3. A proton moves in a circular orbit just outside the spherical shell. Calculate the speed of the proton. Part 1 of 6 - Conceptualize: Draw a picture of the physical setup described in the problem statement. Your picture should look...
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What...
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What is the magnitude of the electric field it produces at the following places? (k = 1/4 0 = 9.0 × 109 N  m2/C2) (a) at 1.0 cm above the surface (b) at 7.0 cm from the center of the sphere
A charged point particle is placed at the center of a spherical Gaussian surface. The electric...
A charged point particle is placed at the center of a spherical Gaussian surface. The electric flux ΦE is changed if:
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a...
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a spherical conducting shell of inner radius 3.4 cm and outer radius 3.9 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude 7.5 N/C. a) What is the charge density (in C/m2) on the inner surface of the shell? b) What is the charge density (in C/m2) on the outer surface of the shell? c) What...