First break the proton's velocity into components.
vy
= v sin(theta)
=0.6553c
vx = v cos(theta) =0.4588c
Then use the
velocity addition
rule to subtract the speed of the reference frame from
vx:
vx' = (vx - beta) / (1 - vx beta)
= (v cos(theta) - beta) / (1 - v cos(theta) beta)
= -0.4076c
The y component of the velocity is unchanged:
vy' = vy =0.6553c
So the speed in S' is:
v' = sqrt (vx'^2 + vy'^2)
= sqrt ( ((v cos(theta) - beta) / (1 - v cos(theta)
beta))^2 + (v sin(theta))^2 )
= 0.79996c
and the direction is:
theta' = arctangent (v sin(theta) (1 - v cos(theta) beta) / (v
cos(theta) - beta))
=-58.118 degrees
Get Answers For Free
Most questions answered within 1 hours.