Question

In a spring block system the oscillation frequency is 5.00 Hz. If the amplitude of oscillation...

In a spring block system the oscillation frequency is 5.00 Hz. If the amplitude of oscillation is 0.300 m, determine position, velocity, and acceleration at t = 0.600 s. (10 points)

Homework Answers

Answer #1

Note: The answer to this question depends on whether the motion starts from mean position or extreme position. I have calculated both the cases and given the amswer for both of them. If you still have any doubts, put them up in comments. Or else please rate the answer if you find it useful. Thanks.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm,...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm, and a maximum speed of 3.20 m/s. Find the frequency of oscillation.
A spring with a spring constant of 40 N/m is allowed to bob with an amplitude...
A spring with a spring constant of 40 N/m is allowed to bob with an amplitude of 20 cm. If the mass on the spring is 2kg and the phase constant is 0, what is The frequency of oscillation? The period of oscillation? The maximum velocity? The maximum acceleration? The position equation? The velocity at t=3 s?
An oscillator consists of a block attached to a spring (k = 125 N/m). At some...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.700 m, v = −12.0 m/s, and a = −128 m/s2. (a) Calculate the frequency of oscillation. Incorrect: Your answer is incorrect. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion. m
An oscillator consists of a block attached to a spring (k = 436 N/m). At some...
An oscillator consists of a block attached to a spring (k = 436 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.100 m, v = -14.6 m/s, and a = -135 m/s^2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
An oscillator consists of a block attached to a spring (k = 483 N/m). At some...
An oscillator consists of a block attached to a spring (k = 483 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0632 m, v = -18.4 m/s, and a = -105 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
An oscillator consists of a block attached to a spring (k = 495 N/m). At some...
An oscillator consists of a block attached to a spring (k = 495 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.0628 m, v = -17.7 m/s, and a = -124 m/s2. Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm,...
An oscillating block-spring system has a mechanical energy of 1.53 J, an amplitude of 9.82 cm, and a maximum speed of 2.41 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
A block with mass m =7.3 kg is hung from a vertical spring. When the mass...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m Submit 2) What is the oscillation frequency? Hz Submit 3) After t = 0.45 s what is...