Question

A grinding wheel in the form of a uniform solid disk of radius 8 cm and...

A grinding wheel in the form of a uniform solid disk of radius 8 cm and mass 1.8 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.866 N*m.  

(a) How long does it take the wheel to reach its operating speed of 1200 rev/min?

  

(b) How many full rotations does it make before coming to its operating speed?

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm...
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm and mass 2.06 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.590 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 220 rev/min? s (b) Through how many revolutions does it turn while accelerating? rev
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm...
A grinding wheel is in the form of a uniform solid disk of radius 7.07 cm and mass 1.97 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.594 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 150 rev/min? ___s (b) Through how many revolutions does it turn while accelerating? ___ rev
A grinding wheel is in the form of a uniform solid disk of radius 6.95 cm...
A grinding wheel is in the form of a uniform solid disk of radius 6.95 cm and mass 1.91 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.591 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 240 rev/min? s (b) Through how many revolutions does it turn while accelerating?
A grinding wheel is in the form of a uniform solid disk of radius 6.99 cm...
A grinding wheel is in the form of a uniform solid disk of radius 6.99 cm and mass 1.93 kg. It starts from rest and accelerates uniformly under the action of the constant torque of 0.594 N · m that the motor exerts on the wheel. (a) How long does the wheel take to reach its final operating speed of 1 100 rev/min? ______________s (b) Through how many revolutions does it turn while accelerating? ___________rev
A 2.00 kg grinding wheel is in the form of a solid cylinder of radius 0.130...
A 2.00 kg grinding wheel is in the form of a solid cylinder of radius 0.130 m . A-What constant torque will bring it from rest to an angular speed of 1000 rev/min in 2.90 s ? B-Through what angle has it turned during that time? C-Through what angle has it turned during that time? Use equation W=τz(θ2−θ1)=τzΔθ to calculate the work done by the torque. D-What is the grinding wheel's kinetic energy when it is rotating at 1000 rev/min...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 6.60 cm and a mass of 0.530 kg . Calculate its moment of inertia about its center. Calculate the applied torque needed to accelerate it from rest to 1600 rpm in 6.30 s if it is known to slow down from 1600 rpm to rest in 51.0 s .
What is the angular momentum of a 2.8-kg uniform cylindrical grinding wheel of radius 29 cm...
What is the angular momentum of a 2.8-kg uniform cylindrical grinding wheel of radius 29 cm when rotating at 1200 rpm ? How much torque is required to stop it in 4.0 s ?
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass...
A grinding wheel is a uniform cylinder with a radius of 7.50 cm and a mass of 0.670 kg . Part A Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units. Part B Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 7.80 s . Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to...
QUESTION 1: We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass...
QUESTION 1: We can roughly model a gymnastic tumbler as a uniform solid cylinder of mass 75.0 kg and diameter 1.20 m . A) If this tumbler rolls forward at 0.450 rev/s, how much total kinetic energy does he have? K= B) What percent of his total kinetic energy is rotational? Krot/K= QUESTION 2: A 2.70-kg grinding wheel is in the form of a solid cylinder of radius 0.100 m. A) What constant torque will bring it from rest to...
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an...
A solid, cylindrical grinding wheel has mass 2.37 kg and diameter 11.0 cm. It has an angular speed of 1224 rev/min. when the motor that turns it is shut off. The wheel slows uniformly to a stop after 48 seconds due to frictional forces. Find: a. angular accleleration b. number of revolutions during the 48 seconds c. frictional torque that caused the wheel to slow to a stop d. wheels initial kinetic energy e. frictional power