Question

11.2 A mass oscillates on a spring of force constant 25.0 N/m and is subjected to...

11.2 A mass oscillates on a spring of force constant 25.0 N/m and is subjected to a damping force Fx = ?bvx , where b = 2.40 kg/s. (a) What special value of the mass m determines whether the mass undergoes underdamped oscillations, is critically damped, or is overdamped? (b) If m is eight times this special value, how long does it take for the amplitude to be reduced by 50%? What is the period of the oscillation? Plot the position as a function of time for the first two cycles, assuming an initial amplitude of 10 cm and initial phase angle ? of zero.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block moving on the end of a spring with a force constant ? = 2.5...
A block moving on the end of a spring with a force constant ? = 2.5 ?⁄? is acted on by a damping force ?? = −???. (a) If the constant b has the value 0.9 kg/s, what is the frequency of oscillation of the block? (b) For what value of b will the motion be critically damped? (c) Draw brief sketches and explain the difference between underdamped, critically damped and overdamped oscillations.
A block moving on the end of a spring with force constant ? = 2.5 ?⁄?...
A block moving on the end of a spring with force constant ? = 2.5 ?⁄? is acted on by a damping force ?(?) = −??(?) (a) If the constant b has the value 0.9 kg/s, what is the frequency of oscillation of the block? (b) For what value of b will the motion be critically damped? (c) Draw brief sketches and explain the difference between underdamped, critically damped and overdamped oscillations.
Consider the mass-spring systems with spring constant 1 and damping constant b. For which values of...
Consider the mass-spring systems with spring constant 1 and damping constant b. For which values of b is this system underdamped, overdamped, undamped, or critically damped?
2. Consider a spring-mass-damper system with the equation of motion given by: ?̈+ 2?̇ + 122?...
2. Consider a spring-mass-damper system with the equation of motion given by: ?̈+ 2?̇ + 122? = 0 a) Is the system overdamped, underdamped or critically damped? Does the system oscillate? If the system oscillates, compute the frequency of the oscillations in rad/s and Hz. b) Determine the displacement response if the initial conditions are ?0 = −1 mm and ?0 = 12 mm/s
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
3. Consider a spring-mass-damper system with the equation of motion given by: ?̈+ 7?̇ + 10?...
3. Consider a spring-mass-damper system with the equation of motion given by: ?̈+ 7?̇ + 10? = 0 c) Is the system overdamped, underdamped or critically damped? Does the system oscillate? If the system oscillates, compute the frequency of the oscillations in rad/s and Hz. d) Determine the displacement response if the initial conditions are ?0 = 2 mm and ?0 = −7 mm/s
An object has a mass of 2 Kg. It is attached to a spring that has...
An object has a mass of 2 Kg. It is attached to a spring that has a constant of K=10 N/m and also a damping force of 4 times the velocity. The object begins at 1 m below equilibrium and has a beginning velocity of 1 m/s toward equilibrium( upward) . Solve for the position x(t). Is the spring overdamped, underdamped or critically damped?
A 10.5-kg object oscillates at the end of a vertical spring that has a spring constant...
A 10.5-kg object oscillates at the end of a vertical spring that has a spring constant of 1.70 ? 104 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N · s/m. (a) Calculate the frequency of the damped oscillation. Hz (b) By what percentage does the amplitude of the oscillation decrease in each cycle? % (c) Find the time interval that elapses while the energy of the system drops to 4.00% of its...
An unhappy 0.300kg rat, moving on the end of spring with a spring constant,                   k...
An unhappy 0.300kg rat, moving on the end of spring with a spring constant,                   k = 2.50N/m, is acted upon by a damping force, Fx = -bvx. If the constant, b, has a value of 0.900kg/s, what is the frequency of oscillation of the rat? For what value of the constant , b, will the motion be “critically” damped?
An object of mass, m = 0.200kg, is hung from a single spring with spring constant,...
An object of mass, m = 0.200kg, is hung from a single spring with spring constant,       k = 80.0N/m. (Ignore the mass of the spring.) The object is subject to a resistive force, f,       given by f =-bv where v = the velocity of the mass in m/s.    If the damped frequency, w’ = 0.75w0, the undamped frequency, what is the value of “b”? What is the “Q” of the system? By what factor is the amplitude...