Question

Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is...

Coherent light of wavelength 600 nm is incident on a narrow slit. The diffraction pattern is observed on a screen that is 4.00 m from the slit. On the screen the width of the central maximum of the diffraction pattern is 3.00 mm. What is the width of the slit? answer is 1.6 mm

Homework Answers

Answer #1

If u have any doubt we can discuss in comment section. Otherwise please like. Thank u.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light with a wavelength of 460 nm is incident on a single slit with a slit...
Light with a wavelength of 460 nm is incident on a single slit with a slit width of 1.55 mm. A Single Slit Diffraction Pattern is observed on a screen that is 1.55 m away from the slit. What is the angle for the 1st order minimum? What is the angle (in degrees - written as "deg") for the 2nd order minimum? How wide (in mm) is the Central Maximum? How wide (in mm) is the First Maximum that is...
A. Part 1A. Light of wavelength 640 nm is incident on a long narrow slit. Find...
A. Part 1A. Light of wavelength 640 nm is incident on a long narrow slit. Find the angle of the first diffraction minimum if the width of the slit is 1.5 mm. Answer in units of mrad. Part 2A. Find the angle of the first diffraction minimum if the width of the slit is 0.15 mm. Answer in units of mrad. B. Part 1B. Monochromatic light from a helium-neon laser (wavelength 613.1 nm) is incident normally on a diffraction grating...
Light with a wavelength of 550 nm is incident on a single slit, creating a diffraction...
Light with a wavelength of 550 nm is incident on a single slit, creating a diffraction pattern on a distant screen 2.5 m away. At a point on the diffraction pattern that is 1.443 m from the central maximum, the path length difference between the ray from the top of the slit and the bottom of the slit results in a phase difference of 6π radians. What is the width of the slit? (a) 1.1 µm (b) 2.2 µm (c)...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is...
Monochromatic light of 600 nm incident on a 0.2mm wide single slit. A diffraction pattern is appeared on a screen 130cm away from the single slit. Calculate the fractional intensity I/Imax at a point on the screen 5 mm from the center of the principal maximum.
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
When a light source with wavelength of 500 nm is normally incident to a plate with...
When a light source with wavelength of 500 nm is normally incident to a plate with a single slit, the central diffraction maximum observed on a screen that is 2.95 mm  behind the plate has a width w. The incident light is then changed to a source with wavelength of 632 nm. How far behind the plate should the screen now be placed in order to obtain the same width w for the central diffraction maximum?
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit...
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit 0.460 mm wide. The diffraction pattern is observed on a screen 4.00 m from the slit. In terms of the intensity I0 at the peak of the central maximum, what is the intensity of the light at the screen the following distances from the center of the central maximum? a) 1.00mm b) 3.00mm c) 5.00 mm
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.