Question

A 29.0 g ball is fired horizontally with initial speed v0 toward a 110 g ball...

A 29.0 g ball is fired horizontally with initial speed v0 toward a 110 g ball that is hanging motionless from a 1.00 m -long string. The balls undergo a head-on, perfectly elastic collision, after which the 110 g ball swings out to a maximum angle ?max = 52.0 ?. What was v0?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 110 g ball moving to the right at 4.0 m/s catches up and collides with...
A 110 g ball moving to the right at 4.0 m/s catches up and collides with a 410 g ball that is moving to the right at 1.0 m/s . If the collision is perfectly elastic, what is the speed of the 110 g ball after the collision? If the collision is perfectly elastic, what is the direction of motion of the 110 g ball after the collision? If the collision is perfectly elastic, what is the speed of the...
Ball 1, with a mass of 110 g and traveling at 11 m/s , collides head...
Ball 1, with a mass of 110 g and traveling at 11 m/s , collides head on with ball 2, which has a mass of 350 g and is initially at rest. A) What is the final velocity of the ball 1 if the collision is perfectly elastic? B) What is the final velocity of the ball 2 if the collision is perfectly elastic? C) What is the final velocity of the ball 1 if the collision is perfectly inelastic?...
A 200g projectile is fired horizontally into a 1.00 kg block of wood which is suspended...
A 200g projectile is fired horizontally into a 1.00 kg block of wood which is suspended by a 0.500 m long string. The projectile sticks to the block of wood after impact and the resulting combination swings up until the string makes a 30.0 degree angle with the vertical. Determine the initial speed of the projectile.
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into...
A 5.00-g bullet moving with an initial speed of v0 = 410 m/s is fired into and passes through a 1.00-kg block, as in the figure below. The block, initially at rest on a frictionless horizontal surface, is connected to a spring with a spring constant of 940 N/m. (a) If the block moves 5.00 cm to the right after impact, find the speed at which the bullet emerges from the block. (b) If the block moves 5.00 cm to...
A 200 g rubber ball is attached to a 1.0 m long string and released from...
A 200 g rubber ball is attached to a 1.0 m long string and released from an angle (theta). It swings down and at the very bottom has a perfectly elastic collision with a 1.0 kg block. The block is resting on a frictionless surface and is connected to a 20 cm long spring with spring constant 2000 N/m. After the collision, the spring compresses a maximum distance of 3.0 cm. From what angle was the ball released?
A billiard ball with a mass of 4 g is moving east while a second ball...
A billiard ball with a mass of 4 g is moving east while a second ball with a mass of 3 g moves west. Positive x axis is due east. The two balls come into head on collision while moving in their respective velocities. Assume that the motion is one dimensional and the collision is perfectly elastic. If the initial velocities of the balls are 12 cm/s and 10 cm/s, what are the velocities of each ball after the collision?
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision with a 0.080 kg ball initially moving away from it in the same direction at a speed of 3.40 m/s. Assuming a perfectly elastic collision, What is the velocity of the tennis ball after the collision? (Take the initial direction of the balls as positive.) m/s What is the velocity of the 0.080 kg ball after the collision? m/s
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know? please show work on paper
Two balls of clay are shot at each other with an initial angle of 110 degrees...
Two balls of clay are shot at each other with an initial angle of 110 degrees between them. One ball has a mass of 30 g and a speed of 1.5 m/s, and the other ball has a mass of 40 g and a speed of 1.2 m/s. When the balls collide, they stick together. What is the velocity (speed and direction) of the 70-g ball after the collision?
A 6.03-g bullet is fired horizontally at a speed of 662 m/s directly toward a 3.89-kg...
A 6.03-g bullet is fired horizontally at a speed of 662 m/s directly toward a 3.89-kg wooden block. The wooden block is sliding on a frictionless surface and is moving toward the bullet at a speed of 2.68 m/s. The bullet passes through the block and the block's speed is reduced to 1.98 m/s. With what speed does the bullet emerge from the other side of the block?