Question

Imagine you are in an open field where two loudspeakers are set up and connected to...

Imagine you are in an open field where two loudspeakers are set up and connected to the same amplifier so that they emit sound waves in phase at 688 Hz. Take the speed of sound in air to be 344 m/s.

Part A

If you are 3.00 m from speaker A directly to your right and 3.50 m from speaker B directly to your left, will the sound that you hear be louder than the sound you would hear if only one speaker were in use?

Homework Answers

Answer #1

Part (A), correct oprion is : yes


beacause,


frequency, f=688 Hz


speed, v=344 m/sec


wavelength, lambda=v/f


lambda=344/688


lambda=0.5 m ---(1)


and


the distance between person and speaker A is r1=3m


the distance between person and speaker B is r2=3.5m


===>


path difference, d= r2-r1


=3.5-3


=0.5 m ----(2)


therefore,


from equation (1) and (2),


path difference is equal to lambda


hence, sound wave forms the constuctive interference


and the sound will be louder

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Imagine you are in an open field where two loudspeakers are set up and connected to...
Imagine you are in an open field where two loudspeakers are set up and connected to the same amplifier so that they emit sound waves in phase at 688 Hz. Take the speed of sound in air to be 344 m/s. A) If you are 3.00 m from speaker A directly to your right and 3.50 m from speaker B directly to your left, will the sound that you hear be louder than the sound you would hear if only...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m...
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m behind speaker 1, and the phase difference between the speakers is 90 degree . (I) What is the phase difference of the sound wave at a point 2.00 m in front of speaker 1? (II) What is the minimum distance between the two speakers such that the observer at this position hears the minimal sound? (6 points)
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit...
Two loudspeakers are in a room where the speed of sound is 343 m/s. They emit 531 Hz sound waves along the x-axis. If the speakers are in phase, what is the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive (in m)?
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other....
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other. A person initially stands 1.6 meters in front      of one of the speakers. The person then walks directly away from this speaker. How far will the person have walked when they hear the combined sounds from the two speakers reach a minimum in loudness for the third time? The power output of each speaker is 2.40 mW. What is the sound intensity level...
Two loudspeakers that emit sound of 686 Hz, but 900 out of phases are placed along...
Two loudspeakers that emit sound of 686 Hz, but 900 out of phases are placed along walls on the opposite sides of a gym and are separated by a distance of 25.00m. (I)If Janet starts walking from one speaker towards the other speaker, how far does she have to walk before she hears the first constructive interferences? (II) What is the phase difference when she is midway between the two speakers? The speed of sound in air is 343.0m/s.
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from...
9. Two out of phase loudspeakers are some distance apart. A person stands 5.50 m from one speaker and 3.70 m from the other. What is the lowest acceptable frequency at which the person will hear destructive interference? The speed of sound in air is 346 m/s.
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face each other at a distance of 1.24 m. Locate the points along the line joining the two speakers where relative minima of sound pressure amplitude would be expected. (Take the speed of sound in air to be 343 m/s. Choose one speaker as the origin and give your answers in order of increasing distance from this speaker. Enter 'none' in all unused answer boxes.)...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face each other at a distance of 1.24 m. Locate the points along the line joining the two speakers where relative minima of sound pressure amplitude would be expected. (Take the speed of sound in air to be 343 m/s. Choose one speaker as the origin and give your answers in order of increasing distance from this speaker. Enter 'none' in all unused answer boxes.)...
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one...
Two out of phase loudspeakers are some distance apart. A person stands 5.30 m from one speaker and 3.10 m from the other. What is the third lowest frequency at which destructive interference will occur at this point? The speed of sound in air is 339 m/s. (answer in Hz)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT