Question

Engineers are testing a new thin-film coating whose index of refraction is less than that of...

Engineers are testing a new thin-film coating whose index of refraction is less than that of glass. They deposit a 420-nm-thick layer on glass, then shine lasers on it. A red laser with a wavelength of 640 nm has no reflection at all, but a violet laser with a wavelength of 400 nm has a maximum reflection. How the coating behaves at other wavelengths is unknown.

What is the coating's index of refraction?

Homework Answers

Answer #1

please rate if it helps.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index...
1. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index of refraction 1.30) of unknown thickness that covers glass (index of refraction 1.50). What minimum non-zero thickness is needed such that wavelengths of 650 nm in air are bright in the reflection? 2. You observe two point sources of light that are spaced 10 cm apart which are each emitting light of wavelength of 590 nm. If the diameter of your pupil is 2...
A material having an index of refraction of 1.35 is used as an antireflective coating on...
A material having an index of refraction of 1.35 is used as an antireflective coating on a piece of glass (n = 1.50). What should be the minimum thickness of this film in order to minimize reflection of 460 nm light? nm If instead a material with an index of refraction of 1.75 is used for the coating, what are the two smallest thicknesses to minimize reflection (in order). nm and nm
All questions are about the same film with index of refraction 1.3 which is illuminated with...
All questions are about the same film with index of refraction 1.3 which is illuminated with colors red of the wavelength 650nm and blue of 390nm wavelength. 1. This film is positioned with upper surface contacting the air and lower surface contacting oil with index of refraction 1.22. What is the minimum thickness of this film which provide strong reflection in magenta color? (magenta color occurs if you are mixing red and blue) 2. What is the next after minimum...
for non-reflecting coating, what is the thickness of an optical coating of MgF2 whose index refraction...
for non-reflecting coating, what is the thickness of an optical coating of MgF2 whose index refraction is n=1.38 and which is designed to eliminate reflected light at wavelengths (in air) around 550nm when incident normally on glass for which n=1.50
A glass lens is coated on one side with a thin film of magnesium fluoride (MgF2)...
A glass lens is coated on one side with a thin film of magnesium fluoride (MgF2) in order to reduce reflection from the lens surface. The index of refraction of MgF2 is 1.42; that of the glass the lens is made out of is 1.50. What is the least thickness for the coating that eliminates the reflections of light that is in the middle of the visible spectrum (wavelength 550 nm)? Please show all work and explain how you got...
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown...
An anti-glaring uniform thin film of magnesium fluoride (MgF2, index of refraction 1.38) covers a crown glass case of refractive index 1.52. This film has a thickness such that it cancels normally incident light of wavelength 525 nm that strikes the film surface from air. The film is thicker than the minimum thickness to achieve this cancellation. Over time, the MgF2 film wears away at a rate of 2.10 nm per year. What is the minimum number of years before...
1. You observe two point sources of light that are spaced 10 cm apart which are...
1. You observe two point sources of light that are spaced 10 cm apart which are each emitting light of wavelength of 590 nm. If the diameter of your pupil is 2 mm, how distant can the objects be from your eye for you to just barely resolve them 2. Light traveling in air (index of refraction 1.00) falls onto a thin plastic film (index of refraction 1.30) of unknown thickness that covers glass (index of refraction 1.50). What minimum...
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread...
A uniform film of TiO2, 1036 nm thick and having index of refraction 2.62, is spread uniformly over the surface of crown glass of refractive index 1.52. Light of wavelength 545 nm falls at normal incidence onto the film from air. You want to increase the thickness of this film so that the reflected light cancels. (B)After you make the adjustment in part (a), what is the path difference between the light reflected off the top of the film and...
A thin layer of a material with an index of refraction 1.50 is placed on top...
A thin layer of a material with an index of refraction 1.50 is placed on top of a translucent slab with an index of refraction of 1.80. Air surrounds both. When a source of white light is shown on the surface, the top layer greatly reduces the intensity of reflected light having a 630-nm wavelength. (a) Find the top layer’s minimum thickness. (b) Does it reduce other reflected wavelengths in the visible spectrum? Which ones? (c) If 25.0nm were shaved...
A coating of methylene iodine (index of refraction 1.737) covers a glass plate having a thickness...
A coating of methylene iodine (index of refraction 1.737) covers a glass plate having a thickness of 5.0 cm and which has an index of refraction of 1.50. Light of wavelength 420 nm is incident upon this configuration from near normal incidence. What are the TWO thinnest coatings of methylene iodine which results in the reflected light being the brightest? please double check your answer