Question

A liquid is flowing through a horizontal pipe whose radius is 0.0323 m. The pipe bends...

A liquid is flowing through a horizontal pipe whose radius is 0.0323 m. The pipe bends straight upward through a height of 13.0 m and joins another horizontal pipe whose radius is 0.0799 m. What volume flow rate will keep the pressures in the two horizontal pipes the same?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A liquid is flowing through a horizontal pipe whose radius is 0.00752 m. The pipe bends...
A liquid is flowing through a horizontal pipe whose radius is 0.00752 m. The pipe bends straight upward through a height of 4.40 m and joins another horizontal pipe whose radius is 0.0487 m. What volume flow rate will keep the pressures in the two horizontal pipes the same?
Water is flowing into a factory in a horizontal pipe with a radius of 0.0183 m...
Water is flowing into a factory in a horizontal pipe with a radius of 0.0183 m at ground level. This pipe is then connected to another horizontal pipe with a radius of 0.0300 m on a floor of the factory that is 11.6 m higher. The connection is made with a vertical section of pipe and an expansion joint. Determine the volume flow rate that will keep the pressure in the two horizontal pipes the same.
Water is flowing into a factory in a horizontal pipe with a radius of 0.0163 m...
Water is flowing into a factory in a horizontal pipe with a radius of 0.0163 m at ground level. This pipe is then connected to another horizontal pipe with a radius of 0.0380 m on a floor of the factory that is 11.6 m higher. The connection is made with a vertical section of pipe and an expansion joint. Determine the volume flow rate that will keep the pressure in the two horizontal pipes the same. _________ m3/s
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe...
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe is 2.3 cm, and the radius of the nozzle is 0.41 cm. The speed of the water in the pipe is 0.74 m/s. Treat the water as an ideal fluid, and determine the absolute pressure of the water in the pipe.
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe...
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe is 1.8 cm, and the radius of the nozzle is 0.51 cm. The speed of the water in the pipe is 0.70 m/s. Treat the water as an ideal fluid, and determine the absolute pressure of the water in the pipe.
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe...
Water flowing out of a horizontal pipe emerges through a nozzle. The radius of the pipe is 1.5 cm, and the radius of the nozzle is 0.55 cm. The speed of the water in the pipe is 0.65 m/s. Treat the water as an ideal fluid, and determine the absolute pressure of the water in the pipe.
The pressure of water flowing through a 6.3×10?2 ?m -radius pipe at a speed of 1.1...
The pressure of water flowing through a 6.3×10?2 ?m -radius pipe at a speed of 1.1 m/s is 2.2 ×105 N/m2. (a) What is the flow rate of water? (b) What is the pressure in the water after it goes up a 4.6 ?m -high hill and flows in a 5.0×10?2 ?m-radius pipe?
The pressure of water flowing through a 5.9×10^-2 m-radius pipe at a speed of 1.2 m/s...
The pressure of water flowing through a 5.9×10^-2 m-radius pipe at a speed of 1.2 m/s is 2.2×10^5 N/m^2. a) What is the flow rate of the water? b) What is the pressure in the water after it goes up a 5.8 m-high hill and flows in a 4.2×10^-2 m-radius pipe?
Oil is flowing through a horizontal pipe constriction. In the large section, the pipe has a...
Oil is flowing through a horizontal pipe constriction. In the large section, the pipe has a diameter of 1.7 meters and a pressure of 500 kPa. If the pipe constricts to a diameter of 0.5 meters, what is the pressure in the constricted pipe section. (Assume the oil flow rate is 65 m3/min and oil density is 900 kg/m3) 49,432.419 kPa 13.096115 kPa 486.403885 kPa 513.801133 kPa 2. Oil is flowing through a horizontal pipe expansion. In the small section,...
A 4.70 cm radius pipe has ethanol flowing through it at 6.00 m/s. The pipe then...
A 4.70 cm radius pipe has ethanol flowing through it at 6.00 m/s. The pipe then rises by 7.00 m and increases in radius to 11.3 cm. The pipe then empties into the air. (a) What is the pressure within the ethanol in the first 4.70 cm radius segment? ____ Pa (b) How fast is the ethanol in the second 11.3 cm radius segment? ___ m/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT