Question

Calculate the moment of inertia of a thin rod rotating about an axis through its center...

Calculate the moment of inertia of a thin rod rotating about an axis through its center perpendicular to its long dimension. Do the same for rotation about an axis through one of the ends (perpendicular to the length again). Does this confirm the parallel axis theorem? Remember ?? = ? ??C????.

Homework Answers

Answer #1

M = total mass of the rod

L = total length

M/L = linear mass density

dm = mass of small element of length "dx" at small distance "x" = (M/L) dx

small moment of inertia of small length is given as

dI = dm x2

dI = (M/L) x2 dx

Total moment of inertia is given as

I = (M/L) x2 dx

I = ML2/12

M = total mass of the rod

L = total length

M/L = linear mass density

dm = mass of small element of length "dx" at small distance "x" = (M/L) dx

small moment of inertia of small length is given as

dI = dm x2

dI = (M/L) x2 dx

Total moment of inertia is given as

I = (M/L) x2 dx

I = ML2/3

yes this confirms parallel axis theorem

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of...
5) Consider a uniform thin rod with length L. I_1 is the moment of inertia of this rod about an axis perpendicular to the rod a quarter length from its center. I_2 is the moment of inertia of the rod with respect to an axis perpendicular to it through its center. which relationship between the two inertia's is correct? a) I_1 = I_2. b) I_1 > I_2. c) I_1 < I_2. d) they could be the same or different depending...
A thin uniform rod has a length of 0.490 m and is rotating in a circle...
A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing...
Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing distance 4 m from one of its ends. The moment of inertia of the rod about this axis (in kg m2) is
A thin, uniform rod is bent into a square of side length a. If the total...
A thin, uniform rod is bent into a square of side length a. If the total mass of the rod is M, find the moment of inertia about an axis through the center and perpendicular to the plane formed by the interior of the square. Thanks!
thick rod is rotating (without friction) about an axis that is perpendicular to the rod and...
thick rod is rotating (without friction) about an axis that is perpendicular to the rod and passes through its center. The rotational inertia of the rod is 1.8 kg•m2. A 4.2-kg cat is standing at the center of the rod. When the cat is at the center of the rod, the angular speed is 4.8 rad/s. The cat then begins to walk along the rod away from the center of the rod. The cat stops at a distance of 0.4...
1. The rotational inertia of a rod is greatest about an axis that goes through its...
1. The rotational inertia of a rod is greatest about an axis that goes through its center directed along its length that goes through its midpoint directed perpendicular to its length that goes through its end directed perpendicular to its length 2. If one doubles the speed of a moving body, one also doubles its acceleration momentum kinetic energy potential energy inertia 3. In a perfectly elastic one-dimensional collision, the kinetic energy transferred to the target particle is greatest if...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.1 kg · m2 and an angular velocity of +8.0 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.2 rad/s. The axis of rotation for this unit is the same as that for...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.7 kg · m2 and an angular velocity of +7.7 rad/s. Disk B is rotating with an angular velocity of -10.4 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...
A rod of length 10 m rotates about an axis perpendicular to its length and through...
A rod of length 10 m rotates about an axis perpendicular to its length and through its center. Two particles of masses m1 = 4.0 kg and m2 = 3.0 kg are connected to the ends of the rod. What is the angular momentum of the system if the speed of each particle is 2.5 m/s?