Question

Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...

Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 11.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.54 s, determine the coefficient of kinetic friction between m1 and the table.
Two masses are connected by a massless string and a frictionless pulley. The masses of the...
Two masses are connected by a massless string and a frictionless pulley. The masses of the blocks are; m1=500 g and m2= 150g. The coefficiant of friction between m1 and the surface is 0.25. (a) What is the acceleration of the masses? (b) What is the tension in the string?
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley...
Two blocks (m1=5.5kg, m2=7.2kg ) are connected by a string that passes through a massless pulley as shown in the Figure. The first block with mass m1  slides up the inclined plane when the system is released. The inclined plane makes an angle  θ = 310  with the horizontal and the kinetic friction coefficient between the inclined plane and   m1 is =0.35.   Take  g=10m/s2 Find the speed of the block with mass m2 after it travels h=5.6m.
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by...
Two blocks A and B with masses of 50 and 100 kg, respectively, are connected by a rope, the pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the inclined plane is 0.25. If block A moves from C to D a distance of 10m. Assume part of rest. Angle is 35. Determine: a) The change in kinetic energy of block A, b) The change in potential energy in block B, c) Calculate...
two blocks of masses 3 and 2 kg are connected with a massless string through an...
two blocks of masses 3 and 2 kg are connected with a massless string through an ideal pulley. find the acceleration of the block and forces in three cases. the friction coefficient between the horizontal surface and the 3 kg block is a.)0, b.)0.5 and c.)0.8
Two blocks are connected by a massless string that runs across a frictionless pulley with a...
Two blocks are connected by a massless string that runs across a frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm. The first block with an unknown mass of m1 sits on a horizontal surface and is also connected to a spring with a spring constant of k = 250 N/m. The coefficient of kinetic friction between the first block and the surface is 0.400. The second block with a mass of m2 = 6.00...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT