Question

Three charges, each of magnitude 6 nC, are at separate corners of a square of edge...

Three charges, each of magnitude 6 nC, are at separate corners of a square of edge length 4 cm. The two charges at opposite corners are positive, and the other charge is negative. Find the x and y components of the force exerted by these charges on a fourth charge q = +3 nC at the remaining (upper right) corner. (Assume the +x axis is directed to the right and the +y axis is directed upward.)

1.) ____ N î

2.) ____ N j

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Four charges are located on the corners on of a square. The sides of the square...
1.Four charges are located on the corners on of a square. The sides of the square have a length of 0.05 m. The upper left corner has a charge of q, the upper right corner has a charge of – q, the lower left corner has a charge of 2q, and the lower right corner has a charge of -2q. If the magnitude of q is 10-7 C, find the magnitude of the force exerted on the charge at the...
Three equal positive point charges of magnitude Q = 9.00μ C are located at three corners...
Three equal positive point charges of magnitude Q = 9.00μ C are located at three corners of a square of edge length d = 8.1 cm. A negative charge -27.00μ C is placed on the fourth corner. At the position of the negative charge, what is the magnitude of the electric field due to the three positive charges? What is the magnitude of the attractive force on the negative charge?
Identical point charges of +1.2 µC are fixed to three of the four corners of a...
Identical point charges of +1.2 µC are fixed to three of the four corners of a square. What is the magnitude |q| of the negative point charge that must be fixed to the fourth corner, so that the charge at the diagonally opposite corner experiences a net force of zero? |q| = Number _______ Units _____
Eight point charges, each of magnitude q, are located on the corners of a cube of...
Eight point charges, each of magnitude q, are located on the corners of a cube of edge s, as shown in Fig. 3 (i) Determine the x, y, and z components of the resultant force exerted by the other charges on the charge located at point A. (ii) What are the magnitude and direction of this resultant force? (iii) Show that the magnitude of the electric field at the center of any face of the cube has a value of...
At each of the four corners of a square with side length a, there is a...
At each of the four corners of a square with side length a, there is a charge +q. How many other charges are exerting electric forces on the charge at the lower-right corner? The square is placed so that its sides are either parallel or perpendicular to the x-axis.
Identical +3.99 µC charges are fixed to adjacent corners of a square. What charge (magnitude and...
Identical +3.99 µC charges are fixed to adjacent corners of a square. What charge (magnitude and algebraic sign) should be fixed to one of the empty corners, so that the total electric potential at the remaining empty corner is 0 V? __________c An equipotential surface that surrounds a point charge q has a potential of 455 V and an area of 0.91 m2. Determine q. ________c
Four point charges are located at the corners of a square. Each charge has magnitude 3.50...
Four point charges are located at the corners of a square. Each charge has magnitude 3.50 nC and the square has sides of length 3.20 cm. Find the magnitude of the electric field (in N/C) at the center of the square if all of the charges are positive and three of the charges are positive and one is negative. (a) all the charges are positive N/C (b) three of the charges are positive and one is negative N/C
Four point charges are located at the corners of a square. Each charge has magnitude 1.70...
Four point charges are located at the corners of a square. Each charge has magnitude 1.70 nC and the square has sides of length 2.40 cm. Find the magnitude of the electric field (in N/C) at the center of the square if all of the charges are positive and three of the charges are positive and one is negative. HINT (a) all the charges are positive N/C (b) three of the charges are positive and one is negative
Three +3.0 μC point charges are at the three corners of a square of side 0.50...
Three +3.0 μC point charges are at the three corners of a square of side 0.50 m. The remaining corner is occupied by a negative -3.0 μC charge. Find the magnitude of the electric field at the center of the square. (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)
Identical +0.96 micro-Coulomb charges are fixed to adjacent corners of a square. What charge (magnitude and...
Identical +0.96 micro-Coulomb charges are fixed to adjacent corners of a square. What charge (magnitude and algebraic sign) should be fixed to one of the empty corners, so that the total electric potential at the remaining empty corner is 0 V?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT