Question

A 0.50 L container is initially filled with Nitrogen gas at STP. The gas expands against a piston adiabatically to a volume of 50.0% larger than the original volume. The Nitrogen may be treated as an ideal gas with ?=7/5.

a) Calculate the final temperature and pressure.

b) What is the work done?

c) Sketch a pV-diagram for this process. On this diagram also draw the isotherms for the initial and final temperatures.

Answer #1

I you didn't get it, feel free to ask for more explanation. Thankyou

A cylinder with a piston contains 0.100 mol of nitrogen at
2.00×105 Pa and 320 K . The nitrogen may be treated as
an ideal gas. The gas is first compressed isobarically to half its
original volume. It then expands adiabatically back to its original
volume, and finally it is heated isochorically to its original
pressure.
A) Find the work done by the gas during the initial
compression
B) Find the heat added to the gas during the initial
compression...

A cylinder with a piston contains 0.160 mol of nitrogen at
1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal
gas. The gas is first compressed isobarically to half its original
volume. It then expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
a.) Find the work done by the gas during the initial
compression.
b.)Find the heat added to the gas during the initial
compression.
c.)Find...

One
mole of an ideal gas at 25 degrees celsius and one atmosphere
pressure expands adiabatically to twice its original volume, then
compresses isothermally back to the original volume, then proceeds
isochorically back to the initial conditions. How much work is done
by the gas?
work done by the ideal gas.

A cylinder of monatomic ideal gas is sealed in a cylinder by a
piston. Initially, the gas occupies a volume of 3.00 L and the
pressure is initially 105 kPa. The cylinder is placed in an oven
that maintains the temperature at a constant value. 65.0 J of work
is then done on the piston, compressing the gas (in other words,
the gas does −65.0 J of work). The work is done very slowly so that
the gas maintains a...

Consider an ideal gas enclosed in a 1.00 L container at an
internal pressure of 10.0 atm.
Calculate the work, w, if the gas expands against a constant
external pressure of 1.00 atm to a final volume of 20.0 L.
w=____J
Now calculate the work done if this process is carried out in
two steps.
1. First, let the gas expand against a constant external
pressure of 5.00 atm to a volume of 4.00 L
2. From there, let the...

A container with volume 1.64 L is initially evacuated. Then it
is filled with 0.241 g of N2. Assume that the pressure of the gas
is low enough for the gas to obey the ideal-gas law to a high
degree of accuracy.
If the root-mean-square speed of the gas molecules is 162 m/s,
what is the pressure of the gas?
Express your answer in pascals.

An insulated cylinder is filled with nitrogen gas at 25ºC and
1.00 bar. The nitrogen is then compressed adiabatically with a
constant pressure of 5.00 bar until equilibrium is reached. i. What
is the final temperature of the nitrogen if it is treated as an
ideal gas with molar heat capacity CP = 7/2 R ?
ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the
compression. (Hint: Because the enthalpy is a state...

A 2.00-mol sample of a diatomic ideal gas expands slowly and
adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to
a final volume of 31.0 L.
(a) What is the final pressure of the gas?
atm
(b) What are the initial and final temperatures?
initial
K
final
K
(c) Find Q for the gas during this process.
kJ
(d) Find ΔEint for the gas during this
process.
kJ
(e) Find W for the gas during...

One mole of an ideal gas at atmospheric pressure expands
isobarically from a volume of 1m3 to a volume of
2m3.
1 - Find the initial and final temperatures of the gas
2 - Find the work done by the gas
3 - Find the heat added to the gas

Consider 4.30 L of a gas at 365 mmHg and 20. ∘C . If the
container is compressed to 2.90 L and the temperature is increased
to 32 ∘C , what is the new pressure, P2, inside the container?
Assume no change in the amount of gas inside the cylinder.
What pressure would it take to compress 250. L of helium gas
initially at 1.00 atm into a 2.00 L tank at constant
temperature?
A balloon filled with 2.00 L...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 14 minutes ago

asked 15 minutes ago

asked 16 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago