Question

A 0.50 L container is initially filled with Nitrogen gas at STP. The gas expands against...

A 0.50 L container is initially filled with Nitrogen gas at STP. The gas expands against a piston adiabatically to a volume of 50.0% larger than the original volume. The Nitrogen may be treated as an ideal gas with ?=7/5.

a) Calculate the final temperature and pressure.

b) What is the work done?

c) Sketch a pV-diagram for this process. On this diagram also draw the isotherms for the initial and final temperatures.

Homework Answers

Answer #1

I you didn't get it, feel free to ask for more explanation. Thankyou

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. A) Find the work done by the gas during the initial compression B) Find the heat added to the gas during the initial compression...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. a.) Find the work done by the gas during the initial compression. b.)Find the heat added to the gas during the initial compression. c.)Find...
One mole of an ideal gas at 25 degrees celsius and one atmosphere pressure expands adiabatically...
One mole of an ideal gas at 25 degrees celsius and one atmosphere pressure expands adiabatically to twice its original volume, then compresses isothermally back to the original volume, then proceeds isochorically back to the initial conditions. How much work is done by the gas? work done by the ideal gas.
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0...
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w=____J Now calculate the work done if this process is carried out in two steps. 1. First, let the gas expand against a constant external pressure of 5.00 atm to a volume of 4.00 L 2. From there, let the...
A container with volume 1.64 L is initially evacuated. Then it is filled with 0.241 g...
A container with volume 1.64 L is initially evacuated. Then it is filled with 0.241 g of N2. Assume that the pressure of the gas is low enough for the gas to obey the ideal-gas law to a high degree of accuracy. If the root-mean-square speed of the gas molecules is 162 m/s, what is the pressure of the gas? Express your answer in pascals.
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is...
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is then compressed adiabatically with a constant pressure of 5.00 bar until equilibrium is reached. i. What is the final temperature of the nitrogen if it is treated as an ideal gas with molar heat capacity CP = 7/2 R ? ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the compression. (Hint: Because the enthalpy is a state...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3...
One mole of an ideal gas at atmospheric pressure expands isobarically from a volume of 1m3 to a volume of 2m3. 1 - Find the initial and final temperatures of the gas 2 - Find the work done by the gas 3 - Find the heat added to the gas
Consider 4.30 L of a gas at 365 mmHg and 20. ∘C . If the container...
Consider 4.30 L of a gas at 365 mmHg and 20. ∘C . If the container is compressed to 2.90 L and the temperature is increased to 32 ∘C , what is the new pressure, P2, inside the container? Assume no change in the amount of gas inside the cylinder. What pressure would it take to compress 250. L of helium gas initially at 1.00 atm into a 2.00 L tank at constant temperature? A balloon filled with 2.00 L...