Question

Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and...

Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and outer radii of the pipe are r1 = 4 cm and r2 = 4.5 cm, respectively, and the outer surface of the pipe is insulated with a layer of 50 mm thick-calcium silicate of thermal conductivity of k = 0.5 W/m.K, and is maintained at 350 °C. If the convection heat transfer coefficient on the inner surface of the pipe is h = 65 W/m2 ·K, the thermal conductivity of the pipe is k = 50 W/m.K.

a) Draw the equivalent thermal circuit of the system and express all resistances.

b) Determine the heat loss per unit length of the pipe.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water flows through a pipe at an average temperature of T =50°C. The inner and outer...
Water flows through a pipe at an average temperature of T =50°C. The inner and outer radii of the pipe are r1 = 6 cm and r2 = 6.5 cm, respectively. The outer surface of the pipe is wrapped with a thin electric heater that consumes 300 W per m length of the pipe. The exposed surface of the heater is heavily insulated so that the entire heat generated in the heater is transferred to the pipe. Heat is transferred...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside diameter of 100 mm with a 9 mm thick wall. The pipe is mild steel with a thermal conductivity of 80 W m-1 K-1. Covering the pipe is a 20 mm thick layer of polythene insulation with a thermal conductivity of 0.04 W m-1 K-1. The convective heat transfer coefficient of the steam is 513.4 W m-2 K-1. The convective heat transfer coefficient of...
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is...
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.8 W/(m.K), and the temperature of the wall on the inside of the insulation is 320 degrees C. The wall loses heat to the environment by convection. Compute the value of the convection heat transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the...
Steam at 350°F flows through a 3-in (ID) copper pipe having a thickness of 0.22 in....
Steam at 350°F flows through a 3-in (ID) copper pipe having a thickness of 0.22 in. The outside surface of the pipe is insulated with 1-in-thick layer of fiberglass and 0.008-in-thick layer of aluminum. The outside surface of the insulation is exposed to air at 130°F. The convection coefficients for steam and air are 25 and 12 Btu/h-ft2 -°F, respectively. The thermal conductivity of fiberglass is 0.022 Btu/h-ft-°F. a. Calculate the rate of heat transfer for 30-ft length of the...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and...
Liquid, pumped through the inside of the pipe, is at a temperature Ti = 400K and provides a convection coefficient hi = 450 W/m2-K at the inner surface of the pipe. The inside and outside radii of the pipe are r1 = 0.25 m, r2 = 0.31 m. The thermal conductivity of the pipe is 240 W/m-K. The outside radius of the insulation, r3 = 0.35 m. The thermal conductivity of the insulation is 20 W/m-K. The outside surface is...
A stainless steel pipe [thermal conductivity = 17 W/(m.C)] is being used to convey heated oil....
A stainless steel pipe [thermal conductivity = 17 W/(m.C)] is being used to convey heated oil. The inside surface temperature is 13 degrees C. The pipe is 2 cm thick with an inside diameter of 8 cm. The pipe is insulated with 0.04m thick insulation [thermal conductivity = 0.035 W/(m.C)]. The outer insulation temperature is 25 degrees C. Calculate the temperature of the interface between steel and insulation, assume steady-state conditions.
Insulation of steam pipes is an important aspect in industries to resist the heat loss from...
Insulation of steam pipes is an important aspect in industries to resist the heat loss from the steam pipe to the surrounding. In a typical steam pipe in an industry is made of steel( k=58w/mk) has inner diameter of 160mm and outside diameter of 170 mm. The saturated steam from a boiler flowing through the steam pipe is at 300C while the ambient air is at 50 C. The steel pipe has two layers of insulation the inner layer(k=0.17w/mc) is...
A steel pipe has an outer diameter of 0.06 m. It is covered with a 0.05...
A steel pipe has an outer diameter of 0.06 m. It is covered with a 0.05 m thick layer of magnesia (k = 0.07 W m-1 K -1) which in turn is covered with a 0.04 m layer of fibreglass insulation (k = 0.048 W m-1 K -1). The pipe wall outside temperature is 380 K, and the outside surface temperature of the fibreglass is 310 K. What is the interfacial temperature between the magnesia and the fibreglass? [Q/L =...
A 2 cm thick steel pipe (thermal conductivity = 43 W/[m.C]) with 6 cm inside diameter...
A 2 cm thick steel pipe (thermal conductivity = 43 W/[m.C]) with 6 cm inside diameter is being used to convey steam from a boiler to process equipment for a distance of 40 m. The inside pipe surface temperature is 115 degrees C, and the outside pipe surface temperature is 90 degrees C. Calculate the total heat loss to the surroundings under steady-state conditions.
The surface temperature of 200 ft of 8-inch diameter un-insulated pipe carrying steam at 335 F...
The surface temperature of 200 ft of 8-inch diameter un-insulated pipe carrying steam at 335 F is 250 F. The pipe is located in a room with air and surroundings at 50 F. The surface emissivity of the pipe is 0.70. Calculate convection, radiation and total heat loss from the pipe (Btu/hr). The pipe is insulated with 3 inches on insulation with thermal resistance R = 2 hr-ft2-F/Btu per inch. The surface emissivity of the insulation is 0.70. Calculate convection,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT