Question

What is the penetration depth of light of wavelengths 560 nm in c-SI and a-Si?

What is the penetration depth of light of wavelengths 560 nm in c-SI and a-Si?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A light source emits visible light of two wavelengths: ? = 430 nm and ?' =...
A light source emits visible light of two wavelengths: ? = 430 nm and ?' = 510 nm. The source is used in a double-slit interference experiment in which a viewing screen is separated from a double-slit source by a length (L) of 2.80 m and the distance between the two slits (d) is 0.0450 mm. Find the value of y (in m) on the screen at which the fringes from the two wavelengths first coincide.
Light containing wavelengths of 400 nm, 500 nm, and 650 nm is incident from air on...
Light containing wavelengths of 400 nm, 500 nm, and 650 nm is incident from air on a block of crown glass at an angle of 48.6°. (Assume crown glass has refractive indices of n400 nm = 1.53, n500 nm = 1.52, and n650 nm = 1.51.) (a) Are all colors refracted alike, or is one color bent more than the others? 400 nm light is bent the most 500 nm light is bent the most 650 nm light is bent...
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits...
Coherent light that contains two wavelengths, 660 nm and 470 nm passes through two narrow slits with a separation of 0.26 mm. An interference pattern is observed on a screen 5.3 m from the slits. (a) Sketch the setup (b) What is the distance between the first order bright fringe for each wavelength on the screen ? (c) What is the distance between the first dark fringe for each wavelength on the screen ? (d) If electrons with the same...
A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from...
A parallel beam of light containing orange (610 nm) and violet (410 nm) wavelengths goes from fused quartz to water, striking the surface between them at a 60.0º incident angle. (a) What is the angle between the two colors in water? (b) What time in nanoseconds is required for each light ray travel 0.200 m?
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2...
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2 = 450 nm (blue), on two slits separated by 0.170 mm. The two overlapping interference patterns, one from each wavelength, are observed on a screen 1.31 m from the slits. What is the minimum distance (in cm) from the center of the screen to a point where a bright fringe of the green light coincides with a bright fringe of the blue light? cm
A beam of light contains all wavelengths between 430 nm and 700 nm and is incident...
A beam of light contains all wavelengths between 430 nm and 700 nm and is incident on a diffraction grating with 150 lines/mm. If two consecutive orders are overlapping, what can you say about the angles ? of the high and low wavelength light from the two orders? a) A. [?430nm]higher order<[?700nm]lower order B. [?430nm]higher order>[?700nm]lower order C. [?700nm]higher order<[?430nm]lower order D. [?700nm]higher order=[?430nm]lower order b) What is the lowest order that is overlapped by another order? m= ________ c)...
A parallel beam of light containing two wavelengths of λ1=455 nm and λ2 =642 nm enters...
A parallel beam of light containing two wavelengths of λ1=455 nm and λ2 =642 nm enters the silicate flint glass of an equilateral prism at an angle of 45o. At what angle θ1 and θ2 does each beam leave the prism? (hint: Use the chart to find the index of refraction as a function of wavelength)
Find all the wavelengths of visible light emitted when Hydrogen is heated. Approximate visible light to...
Find all the wavelengths of visible light emitted when Hydrogen is heated. Approximate visible light to have the range from 400 nm to 700 nm. No points for only telling the wavelengths. Points will be for showing how you found these wavelengths (mention the transitions).
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air,...
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air, through a flat piece of crown glass 1.38 cm thick, and then back to air. (a) If the beam has an angle of incidence of 20.2° in air, determine the angle at which the two colors of light emerge from the crown glass. The index of refraction respectively for red and violet light in crown glass is 1.512 and 1.530. (Enter a number to...
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air,...
A beam of light containing red (660 nm) and violet (410 nm) wavelengths travels from air, through a flat piece of crown glass 2.24 cm thick, and then back to air. (a) If the beam has an angle of incidence of 38.6° in air, determine the angle at which the two colors of light emerge from the crown glass. The index of refraction respectively for red and violet light in crown glass is 1.512 and 1.530. (Enter a number to...