Question

A mass m = 13 kg is pulled along a horizontal floor, with a coefficient of...

A mass m = 13 kg is pulled along a horizontal floor, with a coefficient of kinetic friction μk = 0.07, for a distance d = 5.1 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle θ = 33° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 33° (thus on the incline it is parallel to the surface) and has a tension T = 35 N.

1)What is the work done by tension before the block gets to the incline?

2)What is the work done by friction as the block slides on the flat horizontal surface?

3)What is the speed of the block right before it begins to travel up the incline?

4)How far up the incline does the block travel before coming to rest?

5)What is the work done by gravity as it comes to rest?

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for...
A mass m = 12 kg is pulled along a horizontal floor with NO friction for a distance d =7.2 m. Then the mass is pulled up an incline that makes an angle θ = 30° with the horizontal and has a coefficient of kinetic friction μk = 0.49. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 30° (thus on the incline it is parallel...
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by...
A 6.53-kg block initially at rest is pulled to the right along a horizontal surface by a constant force of 125 N applied at an angle θ above the horizontal. The coefficient of kinetic friction between the block and the horizontal surface is 0.150. At what angle θ above the horizontal surface should the force be applied to achieve the largest possible speed after the block has moved 5.00 m to the right?
A heavy sled is being pulled by two people as shown in the figure. The coefficient...
A heavy sled is being pulled by two people as shown in the figure. The coefficient of static friction between the sled and the ground is μs = 0.619, and the kinetic friction coefficient is μk = 0.459. The combined mass of the sled and its load is m = 366 kg. The ropes are separated by an angle φ = 22°, and they make an angle θ = 31.8° with the horizontal. Assuming both ropes pull equally hard, what...
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed...
A crate of mass 10.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (c)...
A person pulls a 50-kg crate over a displacement of 40-m along a horizontal floor with...
A person pulls a 50-kg crate over a displacement of 40-m along a horizontal floor with a rope of 100N tension. The rope makes an angle of 37o with the horizontal surface. The floor is rough, exerting a friction force of 60 N. (a) Determine the work done by each of the forces acting on the crate. (b) Determine the final speed of the crate assuming it started from rest.
You are pulling a heavy crate (mass m) up a ramp inclined at an angle θ...
You are pulling a heavy crate (mass m) up a ramp inclined at an angle θ to the horizontal. The ramp is not a smooth surface. The rope that you are pulling with is parallel to the incline. What forces are acting on the crate? Group of answer choices Friction, gravity, normal force and tension Gravity and tension Friction, gravity and tension Friction Gravity, normal force and tension Gravity Normal force Tension
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A crate of mass m1 = 15.3 kg is pulled by a massless rope up a...
A crate of mass m1 = 15.3 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal pulley and is attached to a hanging crate of mass m2 = 16.3 kg. The crates move 1.4 m, starting from rest. Find the work done by gravity on the sliding crate. A crate of mass m1 = 12.4 kg is pulled by a massless rope up a 36.9° ramp. The rope passes over an ideal...
An object of mass m = 20.0 kg travels distance d = 60.0 m at constant...
An object of mass m = 20.0 kg travels distance d = 60.0 m at constant speed on a rough horizontal surface (μk = 0.45). The force (a pull, not a push) applied to the object makes an angle θ = 30.0∘with the horizontal. Calculate: A:The magnitude of the applied force? B:The work done by the applied force? C:The work done by the force of friction?