Question

You drop a spherical marble into a viscous fluid such as jam. The viscosity of the...

You drop a spherical marble into a viscous fluid such as jam. The viscosity of the jam is η=20 Pa.s and the densities of the marble and the jam are 2600 and 1400 kg/m3, respectively. The radius of the marble is 0.5 cm. The marble quickly reaches terminal speed due to the interplay of 3 forces: its weight, the buoyant force and the viscous force (assume Stokes’ law).

Calculate the terminal speed of the marble

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
93. A spherical particle falling at a terminal speed in a liquid must have the gravitational...
93. A spherical particle falling at a terminal speed in a liquid must have the gravitational force balanced by the drag force and the buoyant force. The buoyant force is equal to the weight of the displaced fluid, while the drag force is assumed to be given by Stokes Law, ?s=6????.Fs=6πrηv. Show that the terminal speed is given by ?=2?2?9?(?s−?1)v=2R2g9η(ρs−ρ1)R is the radius of the sphere, ?sρs is its density, and ?1ρ1 is the density of the fluid, and ?η
In addition to the buoyant force, an object moving in a liquid experiences a linear drag...
In addition to the buoyant force, an object moving in a liquid experiences a linear drag force Fdrag = (bv, direction opposite the motion), where b is a constant. For a sphere of radius R, the drag constant can be shown to be b = 6πηR, where η is the viscosity of the liquid. Consider a sphere of radius R and density ρ that is released from rest at the surface of a liquid with density ρf. a. Find an...
You have a glass ball with a radius of 2.00 mm and a density of 2500...
You have a glass ball with a radius of 2.00 mm and a density of 2500 kg/m3. You hold the ball so it is fully submerged, just below the surface, in a tall cylinder full of glycerin, and then release the ball from rest. Take the viscosity of glycerin to be 1.5 Pa s and the density of glycerin to be 1250 kg/m3. Use g = 10 N/kg = 10 m/s2. Also, note that the drag force on a ball...