Question

A stone is suspended from the free end of a wire that is wrapped around the...

A stone is suspended from the free end of a wire that is wrapped around the outer rim of a pulley, as shown in the figure (see the figure (Figure 1) ). The pulley is a uniform disk with mass 12.0kg and radius 31.0cm and turns on frictionless bearings. You measure that the stone travels a distance 12.7m during a time interval of 2.00s starting from rest.

A.

Find the mass of the stone.

Take the free fall acceleration to be .


B.

Find the tension in the wire.

Take the free fall acceleration to be .

Homework Answers

Answer #1

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.00 kg stone is tied to a thin, light wire wrapped around the outer edge...
A 4.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley shown in the figure below (Figure 1). The inner diameter of the pulley is 60.0 cm , while the outer diameter is 1.00 m . The system is released from rest, and there is no friction at the axle of the pulley. a) Find the acceleration of the stone. b) Find the tension in the wire. c)...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a...
Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg and radius .0200 m. A stone of unknown mass is attached to a very light wire that is wrapped around the rim of the pulley. When the system is released from rest, the stone accelerates downward at 5.9 m/s 2 (a) What is the angular acceleration of the pulley? Answer: 295 rad/s 2 (b) Find the torque...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.350 m with mass 12.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius 66cm. This pulley is frictionless in its axle, and has the shape of a solid uniform disk. A. Explain conceptually why the moment of inertia of this pulley is less than the moment of inertia of a hoop around its center with the same mass and circumference as the pulley. B. What is the angular acceleration of the pulley? C. What is the acceleration...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.1 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.7 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
Two metal disks, one with radius R1 = 2.60cm and mass M1 = 0.700kg and the...
Two metal disks, one with radius R1 = 2.60cm and mass M1 = 0.700kg and the other with radius R2 = 5.05cmand mass M2 = 1.55kg , are welded together and mounted on a frictionless axis through their common center. A light string is wrapped around the edge of the smaller disk and a 1.40kg block is suspended from the free end of the string. Part A What is the magnitude of the downward acceleration of the block after it...
A frictionless pulley has the shape of a uniform solid cylinder of mass 2.5 kg and...
A frictionless pulley has the shape of a uniform solid cylinder of mass 2.5 kg and radius 15 cm. A 2.1 kg stone is attached to a very light wire that is wrapped around the rim of the pulley, and the system is released from rest. When the stone has lost 3J of gravitational potential energy, how much kinetic energy does the pulley have? The Answer is 1.1 J I just don't know how to reach this answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT