Two billiard balls of mass m1 = 0.5 kg and m2 = 1.5 are hit at a given moment traveling m1 to the right at 1.0 m / s and m2 traveling to the left at -0.5 m / s. For this case, the magnitude of the velocities just after the shock ends by suppressing a) A perfectly elastic collision e = 1.0, b) Perfectly inelastic collision e = 0.0, c) e = 0.35.
(a)
A perfectly elastic collision e = 1.0,
v1 = ( m1 + m2 / m1 - m2 )*u1 + ( 2m2 / m1 + m2 )*u2
v1 = (0.5 + 1.5 / 0.5 - 1.5)* 1 + (2*1.5 / 0.5 + 1.5) * -0.5
v1 = -2.75 m/s
v2 = (2m1 / m1 + m2 )*u1 + (m1 + m2 / m1 - m2 )*u2
v2 = (2*0.5 / 2)*1 + (2 / -1)*-0.5
v2 = 1.5 m/s
(b)
Perfectly inelastic collision e = 0.0,
m1u1 + m2u2 = (m1 + m2)*v
v = 0.5*1 + 1.5*-0.5 / (0.5 + 1.5)
v = -0.125 m/s
(c)
inelastic collision e = 0.35
From newton's law,
v2 - v1 / u2 - u1 = -e
v2 = v1 - e(u2 - u1)
From conservation of momentum,
m1u1 + m2u2 = m1v1 + m2v2
v1 = u1(m1 - em2) / m1+m2 + u2*(m2 (1+e)) / m1+m2
v1 = (0.1*(0.5 - 0.35*1.5) / 2) + (-0.5*(1.5*1.35) / 2)
v1 = -0.5075 m/s
v2 = v1 - e*(u2 - u1)
v2 = -0.5075 - 0.35*(-0.5 - 1)
v2 = 0.0175 m/s
Get Answers For Free
Most questions answered within 1 hours.