Question

On a frictionless horizontal air table, puck A (with mass 0.252 kg ) is moving toward puck B (with mass 0.368 kg), which is initially at rest. After the collision, puck A has velocity 0.121 m/s to the left, and puck B has velocity 0.651 m/s to the right.

What was the speed *v*Ai of puck A before the
collision?

= 0.830 m/s

Calculate ?K, the change in total kinetic energy of the system that occurs in the collision.

= ?

Answer #1

On a frictionless horizontal air table, puck A (with mass 0.255
kg ) is moving toward puck B (with mass 0.375 kg ), which is
initially at rest. After the collision, puck A has velocity 0.121
m/s to the left, and puck B has velocity 0.653 m/s to the
right.
a) What was the speed vAi of puck A before the collision?
b) Calculate ΔK, the change in the total kinetic energy of the
system that occurs during the collision.

On a frictionless horizontal air table, puck A (with mass 0.247
kg ) is moving toward puck B (with mass 0.374 kg ), which is
initially at rest. After the collision, puck A has velocity 0.124
m/s to the left, and puck B has velocity 0.655 m/s to the
right.
What was the speed vAi of puck A before the collision? =
0.868m/s
Calculate ΔK, the change in the total kinetic energy of the
system that occurs during the collision.

On a frictionless horizontal air table, puck A (with mass 0.246
kg ) is moving toward puck B (with mass 0.372 kg ), which is
initially at rest. After the collision, puck A has velocity 0.121
m/s to the left, and puck B has velocity 0.653 m/s to the
right.
Part A
What was the speed vAi of puck A before the
collision?
View Available Hint(s)
vAi =
1.111.11
m/s
SubmitPrevious Answers
Incorrect; Try Again; 3 attempts remaining
Note that...

On a frictionless horizontal air table, puck A (with mass 0.245
kg ) is moving toward puck B (with mass 0.373 kg ), which is
initially at rest. After the collision, puck A has velocity 0.118
m/s to the left, and puck B has velocity 0.647 m/s to the
right.
Calculate ΔK, the change in the total kinetic energy of the
system that occurs during the collision.

1. On a frictionless horizontal air table, puck A (with mass
0.252 kgkg ) is moving toward puck B (with mass 0.375 kgkg ), which
is initially at rest. After the collision, puck A has velocity
0.122 m/sm/s to the left, and puck B has velocity 0.651 m/sm/s to
the right.
Calculate ΔKΔKDeltaK, the change in the total kinetic energy of
the system that occurs during the collision.
2. A 2.5 kgkg block of wood sits on a frictionless table....

On a frictionless, horizontal air table, puck A (with mass 0.250
kg ) is moving toward puck B (with mass 0.400 kg )
A -After the collision, puck A has a velocity of 0.150 m/s to
the left, and puck B has velocity 0.750 m/s to the right. What was
the speed of puck A before the collision?
B- If the two pucks collide and stick together with a final
velocity of 0.6000 m/s to the right, what was the...

A 0.283 kg puck, initially at rest on a horizontal, frictionless
surface, is struck by a 0.108 kg puck moving initially along the x
axis with a speed of 2.37 m/s. After the collision, the 0.108 kg
puck has a speed of 1.37 m/s at an angle of 32◦ to the positive x
axis.
a. Determine the velocity of the 0.283 kg puck after the
collision.
b. Find the fraction F of kinetic energy lost in the
collision.

A 0.300-kg puck, initially at rest on a horizontal, frictionless
surface, is struck by a 0.200-kg puck moving initially along the x
axis with a speed of 2.00 m/s. After the collision, the 0.200- kg
puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the
positive x axis. (a) Determine the velocity of the 0.300-kg puck
after the collision. (b) Find the fraction of kinetic energy lost
in the collision.

A 0.30-kg puck, initially at rest on a frictionless horizontal
surface, is struck by a 0.20-kg puck that is initially moving along
the x-axis with a velocity of 8.5 m/s. After the
collision, the 0.20-kg puck has a speed of 5.1 m/s at an angle
of
θ = 53°
to the positive x-axis.
(a) Determine the velocity of the 0.30-kg puck after the
collision.
magnitude
m/s
direction
° from the positive x-axis
(b) Find the fraction of kinetic energy lost...

A 0.300-kg puck, initially at rest on a horizontal, frictionless
surface, is struck by a 0.200-kg puck moving initially along the
x axis with a speed of 2.00 m/s. After the collision, the
0.200-kg puck has a speed of 1.00 m/s at an angle of ? =
49.0° to the positive x axis.
(a) Determine the velocity of the 0.300-kg puck after the
collision.
(b) Find the fraction of kinetic energy transferred away or
transformed to other forms of energy...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 43 minutes ago

asked 49 minutes ago

asked 53 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago