Question

A particle with charge 3.20×10?19 C is placed on the x axis in a region where...

A particle with charge 3.20×10?19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction.

The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.12×10?18 J . In what direction and through what potential difference Vb?Va does the particle move?

If the particle moves from point b to point c in the y direction, what is the change in its potential energy, Uc?Ub?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with charge 1.60×10−19 C is placed on the x axis in a region where...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.44×10−18 J . In what direction and through what potential difference Vb−Va...
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where...
[A particle with charge 6.40×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction.] A. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential difference...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. part A: The particle, initially at rest, is acted upon only by the electric force and moves from point a to point balong the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential...
a) A particle (charge = 70 μC) moves in a region where the only force on...
a) A particle (charge = 70 μC) moves in a region where the only force on it is an electric force. As the particle moves 25 cm from point A to point B, its kinetic energy increases by 4.2 mJ. Determine the electric potential difference, VB - VA. (in Volts) b) Points A [at (3, 1) m] and B [at (8, 8) m] are in a region where the electric field is uniform and given by E→=(4iˆ+3jˆ)E→=4i^+3j^A- VB? (in Volts)
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6...
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 83 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA,...
A point particle with charge q = 4.9 μC is placed on the x axis at...
A point particle with charge q = 4.9 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.8 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex_____ Ey_____ (b) Determine the magnitude and direction of...
A point particle with charge q = 4.6 μC is placed on the x axis at...
A point particle with charge q = 4.6 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.0 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex =   N/C Ey =   N/C (b) Determine the magnitude and...
A charge of +2.20 μμC is at the origin and a charge of -3.20 μμC is...
A charge of +2.20 μμC is at the origin and a charge of -3.20 μμC is on the y axis at y = 40.0 cm. 1) What is the potential at point a, which is on the x axis at x = 40.0 cm? (Express your answer to three significant figures in kV​) 2) What is the potential difference Vb - Va when point b is at (40.0 cm, 30.0 cm)? (Express your answer to three significant figures in kV​​.)...
A charge of +2.20 μC is at the origin and a charge of -3.20 μC is...
A charge of +2.20 μC is at the origin and a charge of -3.20 μC is on the y axis at y = 40.0 cm. a. What is the potential at point a, which is on the x axis at x = 40.0 cm? (Express your answer to three significant figures.) b. What is the potential difference Vb - Va when point b is at (40.0 cm, 30.0 cm)? (Express your answer to three significant figures.) c. How much work...
4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge (x=0.3m)...
4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge (x=0.3m) along x-axis. You are asked to determine the following. (a) Electric field due to 7.00 uC on y-axis at the point (2,-4,0) (b) Electric field due to -5.00 uC at the same point. (c) Net electric field and it’s direction due to total charges at the same point. 4. A point charge 7.00 uC is placed at the origin and -5.00 uC charge due...