Question

A diverging lens with f = -31.5 cm is placed 14.0 cm behind a converging lens...

A diverging lens with f = -31.5 cm is placed 14.0 cm behind a converging lens with f = 20.0 cm. Where will an object at infinity be focused?

Homework Answers

Answer #1

Using the lens equation for first converging lens

1/f = 1/u + 1/v

u = object distance = +infinity

f = focal length = +20 cm

v = image distance = ?

1/v = 1/20 - 1/infinity

v = +20 cm

Now this image will be +20 cm right from the converging lens, Image's distacne from diverging lens will be

u1 = 14 - 20 = -6 cm = object distnace for diverging lens

f1 = focal length of diverging lens = -31.5 cm

v1 = image distance = ?

1/v1 = -1/31.5 + 1/6

v1 = 31.5*6/(31.5 - 6) = 7.41 cm

v1 = +7.41 cm (+ve sign means image to the right of diverging lens) OR (behind the diverging lens)

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a two-lens system consisting of a diverging lens (f=-27.0 cm) and a converging lens (f=22.0...
Consider a two-lens system consisting of a diverging lens (f=-27.0 cm) and a converging lens (f=22.0 cm). An object is placed 7.0 cm to the left of the converging lens and a final image is produced by the two-lens system that is 20.0 cm to the left of the diverging lens. If the converging lens is to the left of the diverging lens, how far apart are the two lenses?
An object is placed 33.0 cm to the left of a diverging lens with a focal...
An object is placed 33.0 cm to the left of a diverging lens with a focal length of -20.0 cm. A converging lens of focal length of 33.0 cm is placed a distance d to the right of the diverging lens. Find the distance d that the final image is at infinity. ______ cm
A diverging lens, f= 20, is placed 10cm to the left of a converging lens, f=20...
A diverging lens, f= 20, is placed 10cm to the left of a converging lens, f=20 cm. The final image of an object placed to the left of the diverging lens is real, and 70 cm away from the diverging lens. Draw a complete ray diagram to scale showing four rays leaving the object and arriving at the final image
A diverging lens with a focal length of -13 cm is placed 12 cm to the...
A diverging lens with a focal length of -13 cm is placed 12 cm to the right of a converging lens with a focal length of 22 cm . An object is placed 34 cm to the left of the converging lens. Where will the final image be located? Express your answer using two significant figures. d =    cm to the left of the diverging lens Where will the image be if the diverging lens is 58 cm from...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70...
Two lenses are placed along the x axis, with a diverging lens of focal length −8.70 cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40...
Two lenses are placed along the x axis, with a diverging lens of focal length −7.40 cm on the left and a converging lens of focal length 15.0 cm on the right. When an object is placed 14.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at x = ∞?
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used...
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used in combination. The converging lens has a focal length of 15.2 cm. The diverging lens is of unknown focal length. An object is placed 19.3 cm in front of the converging lens; the final image is virtual and is formed 12.0 cm in front of the diverging lens. What is the focal length of the diverging lens?
a converging lens (f=40cm) and a diverging lens (f=40cm) are placed 140cm apart, and an object...
a converging lens (f=40cm) and a diverging lens (f=40cm) are placed 140cm apart, and an object is placed 80cm in front of the converging lens. Objects height is 2cm. Find the LOCATION and distance of final image?
A 1.8 cm tall object is placed 5 cm to the left of a converging lens...
A 1.8 cm tall object is placed 5 cm to the left of a converging lens (lens #1) with a focal length of 1.3 cm. To the right of this converging lens is a diverging lens (lens #2) that has a focal length of 2.6 cm. The diverging lens is placed 22.4 cm from the converging lens. Where is the final image, is it real or virtual, and is it upright or inverted?
A diverging lens with a focal length of -14 cm is placed 12 cm to the...
A diverging lens with a focal length of -14 cm is placed 12 cm to the right of a converging lens with a focal length of 19 cm . An object is placed 32 cm to the left of the converging lens.Where will the image be if the diverging lens is 37 cm from the converging lens?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT