Question

A 0.540 kg glider on an air track is attached to the end of an ideal...

A 0.540 kg glider on an air track is attached to the end of an ideal spring with force constant 455 N/m ; it undergoes simple harmonic motion with an amplitude of 4.40×10?2 m .

Part A

Calculate the maximum speed of the glider.

Express your answer to three significant figures.

vmax = 1.28   m/s

Part B

Calculate the speed of the glider when it is at x = ?1.60×10?2 m.

Express your answer to three significant figures.

Part C

Calculate the magnitude of the maximum acceleration of the glider.

Express your answer to three significant figures.

Part D

Calculate the acceleration of the glider at x = ?1.60×10?2 m .

Express your answer to three significant figures.

Part E

Calculate the total mechanical energy of the glider at any point in its motion.

Express your answer to three significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.700kg glider on an air track is attached to the end of an ideal spring...
A 0.700kg glider on an air track is attached to the end of an ideal spring with force constant 490 N/m; it undergoes simple harmonic motion with an amplitude of 6.00×10-2m. A. Calculate the maximum speed of the glider. B. Calculate the speed of the glider when it is at 1.60×10-2m. C. Calculate the magnitude of the maximum acceleration of the glider. D. Calculate the acceleration of the glider at −1.60×10-2m. E. Calculate the total mechanical energy of the glider...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
A mass is performing simple harmonic motion. You may assume that there are no significant frictional...
A mass is performing simple harmonic motion. You may assume that there are no significant frictional forces in this problem (the motion is undamped). The maximum speed of the mass during the motion is 4.6 m/s . The amplitude of the motion is 25 cm Part A.)   What is ? , the angular frequency of this motion? Express your answer using two significant figures. Part B.)   What is T? , the period of this motion?     Express your answer using two...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.50 cmcm left of the equilibrium position and moving to the right at 32.6 cm/s . Part A. What is the phase constant? Express your answer to three significant figures and include the appropriate units.
A 0.250 kg air-track glider is attached to each end of the track by two coil...
A 0.250 kg air-track glider is attached to each end of the track by two coil springs. It takes a horizontal force of 0.900 N to displace the glider to a new equilibrium position, x= 0.090 m. Find the effective spring constant of the system. 1.00×101 N/m The glider is now released from rest at x= 0.090 m. Find the maximum x-acceleration of the glider. 3.60 m/s^2 Find the x-coordinate of the glider at time t= 0.350T, where T is...
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air...
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m. Initially the spring is unstreched and the glider is moving at 1.50 m/s to the right. With the air track turned off, the coefficient of kinetic friction is ?k=0.47. It can be shown that with the air track turned off, the glider travels 8.6 cm before it stops instantaneously. Part A) How large would the...
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right...
On a frictionless air track, a 0.165 kg glider moving at 1.50 m/s to the right collides with and sticks to a stationary 0.265 kg glider. What is the net momentum of this two-glider system before the collision? Use coordinates where +x is in the direction of the initial motion of the lighter glider (Express answer in kg•m/s) What must be the net momentum of this system after the collision (Express answer in kg•m/s) Use your answers in Parts A...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of...
A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m . When the object is a distance 1.25×10−2 m from its equilibrium position, it is observed to have a speed of 0.300 m/s . Part A) What is the total energy of the object at any point of its motion? E = ? J Part B) What is the amplitude of the motion? A = ?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT