Question

You have three charges that are placed in a equilateral triangles corners. The sides of the...

You have three charges that are placed in a equilateral triangles corners. The sides of the triangle are 2 dm.

q1=2.2µC

q2= -4.4µC

q3= 3.3 µC

If we introduce a coordinate system where q3 is located in origin, q1 located in (0.20m , 0m)

and q2 is located in (0.10m, y*0.20m) where y >0 is a real number. What is the value of y and what is direction does the total force from q1 and q2 on q3? If there is no way to state the direction of the force, please state why.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three charges are at the corners of an equilateral triangle, as shown in the figure below....
Three charges are at the corners of an equilateral triangle, as shown in the figure below. Calculate the electric field at a point midway between the two charges on the x-axis. (Let q1 = 2.00 μC, q2 = 2.00 μC,  and q3 = −3.50 μC.) Image: Three charged particles lie in the x y-coordinate plane at the vertices of an equilateral triangle with side length 0.500 m. Positive charge q2 is at the origin. Positive charge q1 is in the first...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 3.4 cm . Two of the particles have a negative charge: q1 = -7.8 nC and q2 = -15.6 nC . The remaining particle has a positive charge, q3 = 8.0 nC . What is the net electric force acting on particle 3 due to particle 1 and particle 2? 1) Find the net force acting on particle 3 due to...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 2.0 cm . Two of the particles have a negative charge: q1= -6.1 nC and q2 = -12.2 nC . The remaining particle has a positive charge, q3 = 8.0 nC. What is the net electric force acting on particle 3 due to particle 1 and particle 2? Find the net force ΣF⃗ 3 acting on particle 3 due to the...
Three charged particles are located at the corners of an equilateral triangle as shown in the...
Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.80 µC, and L = 0.790 m). Calculate the total electric force on the 7.00-µC charge. magnitude N direction ° (counterclockwise from the +x axis) Three charged particles lie in the x y coordinate plane at the vertices of an equilateral triangle with side length L. Positive charge q is at the origin. A charge of 7.00 µC is...
Three equal charges of 5.0x10^-6 are placed at the vertices of an equilateral triangle with sides...
Three equal charges of 5.0x10^-6 are placed at the vertices of an equilateral triangle with sides of 12cm. a) find the net electric force on each of the charges, state the final direction relative to the sides of the triangle b) find the total electric potential at the midpoint of the side between charges 2 and 3
Three charges are at the corners of an equilateral triangle, as shown in the figure below....
Three charges are at the corners of an equilateral triangle, as shown in the figure below. Calculate the electric field at a point midway between the two charges on the x-axis. (Let Let q1 = 7.00 μC, q2 = 4.50 μC, and q3 = −3.00 μC. magnitude =? (N/C) direction = ? (below the x-axis)
Three point charges are located at the corners of an equilateral triangle, as shown. The lower...
Three point charges are located at the corners of an equilateral triangle, as shown. The lower right charge has a value of −4.82μC. P is the midpoint on the base of the triangle and q1 is directly above it. (k = 9 x 109N ∙ m2/C2) [12 marks] a) Calculate the electric field at P due to q1(7μC). [2 marks] b) Calculate the electric field at P due to q2(2μC). [2 marks] c) Calculate the electric field at P due...
Three equal 2.00-μCμC point charges are placed at the corners of an equilateral triangle whose sides...
Three equal 2.00-μCμC point charges are placed at the corners of an equilateral triangle whose sides are 0.400 mm long. What is the potential energy of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.) U= J
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges...
Four charges q1, q2, q3 and q4, are placed at the corners of a square. Charges q1 and q4 are located on opposite corners and have equal charges. Both q2 and q3 have a charge of 1.0 C. If the force on q2 is zero, what is the charge on q1? A. -1.0 C B. -0.35 C C. -0.71 C D. -0.20 C
Three identical charged particles sit at the corners of an equilateral triangle of side length 30...
Three identical charged particles sit at the corners of an equilateral triangle of side length 30 cm. Each particle has a charge of 8.5μc. The charges Q1 and Q2 are positive and Q3 is negative. A.) What are the magnitude and the direction of the net force on charge Q2 is: B.) What is the total electric potential energy of the charge combination is
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT