Question

Two charged balls are connected by an in extensible thread of length 3m. Masses of balls...

Two charged balls are connected by an in extensible thread of length 3m. Masses of balls are 2kg and 1kg, the charges are +20micocoulomb and - 100microcoulomb. What minimum constant external force F must be applied to the ball of mass 1 kg so that the thread does not slack? Neglect friction and gravity.

Homework Answers

Answer #1

Dear student,
Find this solution .if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.
If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.
Your rating is important to me.
Thanks for asking..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two masses, m1=3 kg and m2=2 kg are on a horizontal surface and are connected together...
Two masses, m1=3 kg and m2=2 kg are on a horizontal surface and are connected together via a massless rope. An external force F pulls on m1 at an angle q=30° from the horizontal, as shown in the Figure 2 below. There is friction between m2 and the surface, with coefficients of friction ms=0.4 and mk=0.3, however the friction between m1 and the surface is negligibly small. What is the minimum value of F such that the masses will begin...
The two balls have identical size and masses of 0.20kg each. The pendulum length is 0.80m...
The two balls have identical size and masses of 0.20kg each. The pendulum length is 0.80m and there is a 60 degree angle between the cords. The masses have identical charges. What is electric force of one mass on the other? What is the charge on each mass?
Two metal balls A and B of negligible radius, connected by a taut nonconducting thread of...
Two metal balls A and B of negligible radius, connected by a taut nonconducting thread of length 1.60 m, are floating at rest on Space Station Freedom between two metal bulkheads. Ball A carries charge q, and ball B carries charge 2q. Each ball is 1.06 m away from a bulkhead. (a) If the tension in the string is 3.50 N, what is the magnitude of q? (Ignore any contribution from induced charge in the bulkheads.) 22.32 Correct: Your answer...
1. Two masses are connected by a string which goes over an ideal pulley. Block A...
1. Two masses are connected by a string which goes over an ideal pulley. Block A gas a mass of 3kg and the rough plane is inclined 30 degrees to the horizontal. The coefficients of friction between block A and the plane are Us=0.4 and Uk=0.2. The system initially at rest. If mass B increases gradually by addjng small masses on the top, what is the minimum value of mass B needed for mass A to start moving up? 2....
Two masses are connected by a string that passes over a pulley. The mass m1 is...
Two masses are connected by a string that passes over a pulley. The mass m1 is 9.2 kg, and the mass m2 is 1.6 kg. When the masses are simultaneously released from rest, what is the magnitude of their acceleration (in m/s2)? Neglect any friction. [Note: if you need to enter a number in scientific notation, use 'e'. For example, 1200 = 1.2e3 and 0.0012 = 1.2e-3. Include several decimal places in your calculations and your answer to avoid rounding...
Two balls, of masses MA= 40g and MB= 60g are suspended. The lighter ball is pulled...
Two balls, of masses MA= 40g and MB= 60g are suspended. The lighter ball is pulled away to a 66 degree angle with the vertical and released. The two balls stick and move together (collision is completely inelastic). (length of suspension is 30cm) 1. What is the velocity of the lighter ball just before impact? 2. What is the velocity of the combined mass after the collison? 3. What will be the maximum angle reached by the combined mass (theta...
Two masses, m1 = 4 kg and m2 = 6 kg are connected with a rope...
Two masses, m1 = 4 kg and m2 = 6 kg are connected with a rope and pulled with a horizontal force F=80 N along a rough floor with a kinetics friction coefficient µκ=0.2 (Assume that g = 10 ms-2). the acceleration (in ms-2) is:
The drawing shows two identical systems of objects; each consists of the same three small balls...
The drawing shows two identical systems of objects; each consists of the same three small balls connected by massless rods. In both systems the axis is perpendicular to the page, but it is located at a different place, as shown. The same force of magnitude F is applied to the same ball in each system (see the drawing). The masses of the balls are m1 = 9.4 kg, m2 = 6.9 kg, and m3 = 7.2 kg. The magnitude of...
Two masses are tied together with a string and swung at a constant speed in a...
Two masses are tied together with a string and swung at a constant speed in a horizontal circle.   The inner string (connecting the center to the first mass) has a length of 72.0 cm and the outer string (connecting the first mass to the second mass) has a length of 45.0 cm. The inner object has a mass of m1= 540 g, the outer object has a mass of m2=360 g. The balls complete 5 rotations in 6.4 s.   Find...
The drawing shows two identical systems of objects; each consists of the same three small balls...
The drawing shows two identical systems of objects; each consists of the same three small balls connected by massless rods. In both systems the axis is perpendicular to the page, but it is located at a different place, as shown. The same force of magnitude F is applied to the same ball in each system (see the drawing). The masses of the balls are m1 = 8.2 kg, m2 = 5.3 kg, and m3 = 7.7 kg. The magnitude of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT