Question

Two wooden pucks approach each other on an ice rink as shown in the figure. Puck...

Two wooden pucks approach each other on an ice rink as shown in the figure. Puck #2 has an initial speed of 4.14 m/s and a mass that is some fraction f = 2 3 that of puck #1. Puck #1 is made of a hard wood and puck #2 is made of a very soft wood. As a result, when they collide, puck #1 makes a dent in puck #2 and 13.2% of the initial kinetic energy of the two pucks is lost. Before the collision, the two pucks approach each other in such a manner their momentums are of equal magnitude and opposite directions. Determine the speed of the two pucks after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The mass of the blue puck shown below is 35.0% greater than the mass of the...
The mass of the blue puck shown below is 35.0% greater than the mass of the green one. Before colliding, the pucks approach each other with momenta of equal magnitudes and opposite directions, and the green puck has an initial speed of 7.0 m/s. Find the speeds of the pucks after the collision if half the kinetic energy of the system becomes internal energy during the collision.
The mass of the blue puck shown below is 35.0% greater than the mass of the...
The mass of the blue puck shown below is 35.0% greater than the mass of the green puck. Before colliding, the pucks approach each other with momenta of equal magnitudes and opposite directions, and the green puck has an initial speed of 11.0 m/s. Find the speeds the pucks have after the collision if half the kinetic energy of the system becomes internal energy during the collision. vgreen = m/s vblue = m/s
Two titanium spheres approach each other head-on with the same speed and collide elastically. After the...
Two titanium spheres approach each other head-on with the same speed and collide elastically. After the collision, one of the spheres, whose mass is 250 g, remains at rest. (a) What is the mass (in g) of the other sphere? (b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is 4.5 m/s?
At the roller rink, two 20-kg girls accelerate toward each other until they are each moving...
At the roller rink, two 20-kg girls accelerate toward each other until they are each moving at 1.8 m/s in the Earth reference frame. They then collide stomach-to-stomach, grab on to each other, and fall to the floor. A- Calculate the magnitudes of the momentum of each girl before the collision and after the collision in the Earth reference frame. Enter your answers numerically separated by a comma. B- Calculate the magnitudes of the momentum of each girl before the...
Two particles approach each other with equal and opposite speed v. The mass of one particle...
Two particles approach each other with equal and opposite speed v. The mass of one particle is m, and the mass of the other particle is nm, where n is just a unitless number. Snapshots of the system before, during, and after the elastic collision are shown above. After the collision the first particle moves in the exact opposite direction with speed 2.40v, and the speed of the second particle is unknown. What is the value of n?
Two pieces of clay are moving directly toward each other. When they collide, they stick together...
Two pieces of clay are moving directly toward each other. When they collide, they stick together and move as one piece. One piece has a mass of 332 grams and is moving to the right at a speed of 1.16 m/s. The other piece has mass 606 grams and is moving to the left at a speed of 0.934 m/s. What fraction of the total initial kinetic energy is lost during the collision? In other words what is (KEi -...
Two hockey players hit each other on the ice. Player 1 is of mass 110 kg...
Two hockey players hit each other on the ice. Player 1 is of mass 110 kg and is moving 70 degrees East of South at 8 m/s. Player 2 is of mass 140 kg and is moving 50 degrees North of West at 12 m/s. They collide and stick together. Sketch the situation. (a) Find the velocity of the vehicles after the collision. (b) Find the impulse on car1 during the collision. (c) Which car experiences the larger change in...
Two hockey players hit each other on the ice. Player 1 is of mass 110 kg...
Two hockey players hit each other on the ice. Player 1 is of mass 110 kg and is moving 70 East of South at 8 m/s. Player 2 is of mass 140 kg and is moving 50 North of West at 12 m/s. They collide and stick together. Sketch the situation. (a) Find the velocity of the vehicles after the collision. (b) Find the impulse on car1 during the collision. (c) Which car experiences the larger change in the magnitude...
Two cars approach an intersection at a right angle to each other.  If an inelastic collision occurs...
Two cars approach an intersection at a right angle to each other.  If an inelastic collision occurs at the intersection, determine the x component of the final momentum of the combined vehicles.  Car 1 of mass 865 kg approaches the intersection from the left with a speed of 19.49 m/s.  Car 2 of mass 1,121.17 kg approaches the intersection from the south with a speed of 14.98 m/s.
Two car approach an intersection at a right angle to each other.  If an inelastic collision occurs...
Two car approach an intersection at a right angle to each other.  If an inelastic collision occurs at the intersection, determine the x component of the final momentum of the combined vehicles.  Car 1 of mass 882.7 kg approaches the intersection from the left with a speed of 28.45 m/s.  Car 2 of mass 1,778.35 kg approaches the intersection from the south with a speed of 10.68 m/s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT