Question

A man stands on a platform that is rotating (without friction) with an angular speed of...

A man stands on a platform that is rotating (without friction) with an angular speed of 1.97 rev/s; his arms are outstretched and he holds a brick in each hand. The rotational inertia of the system consisting of the man, bricks, and platform about the central axis is 7.51 kg·m2. If by moving the bricks the man decreases the rotational inertia of the system to 1.36 kg·m2, (a) what is the resulting angular speed of the platform and (b) what is the ratio of the new kinetic energy of the system to the original kinetic energy

Homework Answers

Answer #1

here,

the initial angular speed , w0 = 1.97 rev/s

the initial moment of inertia , I0 = 7.51 kg.m^2

the final moment of inertia , I = 1.36 kg.m^2

let the final angular speed be w

using conservation of angular momentum

I0 * w0 = I * w

7.51 * 1.97 = 1.36 * w

w = 10.9 rev/s or 68.5 rad/s

a)

the final angular speed is 10.9 rev/s or 68.5 rad/s

b)

the ratio of the new kinetic energy of the system to the original kinetic energy , R = 0.5 * I * w^2 /( 0.5 * I0 * w0^2)

R = 1.36 * 10.9^2 /( 7.51 * 1.97^2)

R = 5.5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A man stands on a freely rotating platform, as shown, holding an exercise dumbbell in each...
A man stands on a freely rotating platform, as shown, holding an exercise dumbbell in each hand. With outstretched arms, his angular speed is 1.5 rad/s. After he has pulled his arms in, as shown, his angular speed is 5 rad/s. What is the ratio of his final rotational KE to his initial rotational KE? Explain any differences.
A student sits in a chair that can spin without friction. The student has her hands...
A student sits in a chair that can spin without friction. The student has her hands outstretched and starts rotating at 1.7 rev/s. Her initial rotational inertia about the central axis is 13.00 kg m2. She pulls her hands inward and decreases her rotational inertial to 7.60 kg m2. What is her resulting angular speed after she pulls her hands inward?(rad/s) (in rad/s) What is the ratio of the new kinetic energy of the system to the original kinetic energy?  ...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 2.7 m and moment of inertia 860 kg?m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform...
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform of radius 3.00 m and moment of inertia 826 kg⋅m2. The platform rotates without friction with angular velocity of 0.955 rad/s. The person walks radially to the edge of the platform. You may ignore the size of the person. (a) Calculate the angular velocity when the person reaches the edge of the merry-go-round. (b) Calculate the rotational kinetic energy of the system of platform...
A student on a piano stool rotates freely with an angular speed of 2.92 rev/s. The...
A student on a piano stool rotates freely with an angular speed of 2.92 rev/s. The student holds a 1.50-kg mass in each outstretched arm, 0.752 m from the axis of rotation. The combined moment of inertia of the student and the stool, ignoring the two masses, is 5.48 kg*m^2, a value that remains constant. As the student pulls his arms inward, his angular speed increases to 3.41 rev/s. A) How far are the masses from the axis of rotation...
A boy stands at the center of a turntable, which has a moment of inertia of...
A boy stands at the center of a turntable, which has a moment of inertia of 1.50 kg·m2 about an axis through its center. The boy's moment of inertia about the same axis, when he holds his arms in, is 1.10 kg·m2; when he sticks his arms straight out, his moment of inertia is 1.80 kg·m2. He and the turntable are initially rotating at a rate of 2.00 rad/s, with his arms extended.             a.         He pulls in his arms. What is...
Suppose a friend is completing another physics assignment in their chair at their desk and you...
Suppose a friend is completing another physics assignment in their chair at their desk and you take the opportunity to turn this scenario into the physics question you now must complete. Your friend and chair have a combined constant moment of inertia of 5.4 kg m2, and the chair can freely rotate. Now your friend picks up two solid bricks (each of mass 1.1 kg) they accidentally collected from one of the campus buildings, and experiment with rotational kinematics. Supposing...
A student sitting on a chair on a circular platform of negligible mass rotates freely on...
A student sitting on a chair on a circular platform of negligible mass rotates freely on an air table at initial rotational speed 2.3 rad/s. The student's arms are initially extended with 6.0-kg dumbbells in each hand. As the student pulls her arms in toward her body, the dumbbells move from a distance of 0.80 m to 0.10 m from the axis of rotation. The initial rotational inertia of the student's body (not including the dumbbells) with arms extended is...
Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can...
Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.88 kg·m2 about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 176 rev/min. The second disk, with rotational inertia 7.15 kg·m2 about its central axis, is set spinning counterclockwise at 823 rev/min. They then couple together. (a) What...
A 36 kg child stands on a spinning platform that has been well maintained (neglect friction...
A 36 kg child stands on a spinning platform that has been well maintained (neglect friction in the axle). Initially the platform is spinning at 2.4 rev/s while the child's arms are extended outward (holding some weights). The child then pulls the weights back to close to their body. What is the final angular speed of the platform? Assume that the child can be considered a cylinder with a diameter of 0.8 m, spinning along its center axis and the...