Question

A converging lens has a focal length of 12.5 cm. Construct accurate ray diagrams for object distances of...

A converging lens has a focal length of 12.5 cm. Construct accurate ray diagrams for object distances of (i) 37.5 cm and (ii) 6.25 cm.

(a) From your ray diagrams, determine the location of each image.


What is the magnification of the images?

Homework Answers

Answer #1

Given,

f = 12.5 cm ;

Ray diagrams uploaded (scaling has been done in order for clarity and accomodation in paper)

(i)o = 37.5 cm

We know from lens eqn

1/f = 1/i + 1/o

i = o x f/(o - f)

i = 37.5 x 12.5/(37.5 - 12.5) = 18.75 cm

Hence, i = 18.75 cm

(ii)o = 6.25 cm

i = 6.25 x 12.5/(6.25 - 12.5) = -12.5 cm

Hence, i = -12.5 cm

We know that

M1 = -i/o = -18.75/37.5 = 0.5

M2 = -(-12.5)/6.25 = 2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A converging lens has a focal length of 14 cm. An object is 18 cm...
1. A converging lens has a focal length of 14 cm. An object is 18 cm to the left of the lens. Find the image position The magnification Real or virtual? Erect of inverted? e. Draw the ray diagram using principal rays and a ruler. f. If the object was located 7 cm to the left of the lens, draw the ray diagram.
A) A converging lens of focal length 7.90 cm is 17.7 cm to the left of...
A) A converging lens of focal length 7.90 cm is 17.7 cm to the left of a diverging lens of focal length -5.99 cm. A coin is placed 12.5 cm to the left of the converging lens. Calculate the location of the coin's final image. B) Calculate the magnification of the coin's final image.
A) An object is placed 26 cm in front of a converging lens of focal length...
A) An object is placed 26 cm in front of a converging lens of focal length 5 cm. Another converging lens of focal length 10 cm is placed 20 cm behind the first lens. 1) Find the position of the final image with respect to the second lens.  ____cm 2) Find the magnification of the final image. _____ B) A diverging lens of focal length −12cm projects the image of an object onto a wall. What is the object distance if...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex mirror with a focal length of 10 cm. a.) Use ray tracing alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? b.) Use equations alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? 2.) A 2.0-cm-tall object is 20 cm...
An object is placed 19 cm to the left of a converging lens of focal length...
An object is placed 19 cm to the left of a converging lens of focal length 26 cm. A diverging lens of focal length 10 cm is 25 cm to the right of the converging lens. Find the position and magnification of the final image. ______cm magnification_______X
An object is 7 cm in front of a converging lens with a focal length of...
An object is 7 cm in front of a converging lens with a focal length of 10 cm . Part A Determine the location of the image. Part B Is the image upright or inverted?
A converging lens of focal length f1 = +22.5 cm is placed at a distance d...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d = 60.0 cm to the left of a diverging lens of focal length f2 = −30.0 cm. An object is placed on the common optical axis of the two lenses with its base 45.0 cm to the left of the converging lens. (The thin-lens approximation may be assumed to hold.) (a) Calculate the location of the final image and its overall magnification with respect...
A converging lens, which has a focal length equal to 8.4 cm, is separated by 30.5...
A converging lens, which has a focal length equal to 8.4 cm, is separated by 30.5 cm from a second lens. The second lens is a diverging lens that has a focal length equal to -13.7 cm. An object is 16.8 cm to the left of the first lens. (a) Find the position of the final image using both a ray diagram and the thin-lens equation. __________cm to the right of the object (b) Is the final image real or...
A converging lens has a focal length of 10.0 cm . For each of two objects...
A converging lens has a focal length of 10.0 cm . For each of two objects located to the left of the lens, one at a distance of s1 = 20.5 cm and the other at a distance of s2 = 5.00 cm , determine the following. A)Determine the image position.Express your answer in centimeters separated by a comma to three significant figures. B)Determine the magnification. Express your answer in centimeters separated by a comma to three significant figures. C)Determine...
A diverging lens has a focal length of -14.0 cm. Locate the images for each of...
A diverging lens has a focal length of -14.0 cm. Locate the images for each of the following object distances. For each case, state whether the image is real or virtual and upright or inverted, and find the magnification. (a) 28.0 cm ______ cm  --Location of image-- in front of the lens behind the lens no image formed real, erectreal, inverted    virtual, erectvirtual, inverted magnification __________✕ (b) 14.0 cm ________ cm  --Location of image-- in front of the lens behind the lens no...