Question

If we switch from green laser (lambda=532 nm) to red laser (lambda=670 nm) in a Young's...

If we switch from green laser (lambda=532 nm) to red laser (lambda=670 nm) in a Young's Double Slit Diffraction experiment, then what happes to the fringe pattern?

a. nothing

b. position of the principle maxima changed by 138 nm

c. seperation between fringes increases

d. seperation between fringes decreases

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The...
A physics student demonstrates Young's double-slit experiment using 632.8 nm light from a HeNe laser. The laser light passes through two narrowly separated slits that have a spacing of d. The light produces an interference pattern on a screen that is 4.20 meters in front of the slits. The spacing between the m=2 and m=3 maxima as seen on the screen is 12.0 cm. Determine the spacing between the slits. For the situation described above, determine the phase difference between...
A red laser light (675nm) and green laser light (570nm) are both sent into a Young's...
A red laser light (675nm) and green laser light (570nm) are both sent into a Young's double slit apparatus at the same time. The slits are separated by .170mm and the viewing screen is 237cm away.   By how much are the third red bright spot above the center line and the third green bright spot above the center line separated? ___ cm
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm wide. The diffraction pattern is observed on a screen 3.25 m away. Define the width of a bright fringe as the distance between the minima on either side. Part A: What is the width of the central bright fringe? Part B: What is the width of the first bright fringe on either side of the central one?
A green laser beam (550 nm) strikes a grating and creates an interference pattern on a...
A green laser beam (550 nm) strikes a grating and creates an interference pattern on a wall 2.0 m away. The first maximum (fringe #1) occurs 11.0 cm from the middle of the central maximum. (a) Determine the distance between successive slits and the number of slits per mm. (b) Now a red laser (630 nm) replaces the green. On which side of the green fringe will the first red fringe appear – closer to the central maximum or further...
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The...
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The separation between the slits dd and the width of each slit are not given. The distance between the viewing screen and the plate is L=1.0L=1.0m. The first interference maximum of the 572 nm-wavelength of light is observed at y1=4.4y1=4.4 mm. What is the slit spacing, dd? Using the far-field approximation, calculate the separation between the m=3m=3 interference maxima of λ1λ1 and λ2λ2. There is...
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced...
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced on a screen as shown in the picture. The slit separation ?? is 0.10 mm, and the slit–screen separation ?? is 50 cm. Assume that the angle θ (from the slit center to the maxima and minima) small enough to permit use of the approximations sin θ ≈ tan θ ≈ θ, in which θ is expressed in radian measure. a. A strip of...
The double-slit experiment has red light with wavelength at 500nm where bright fringes are located 2...
The double-slit experiment has red light with wavelength at 500nm where bright fringes are located 2 mm apart near the center of the pattern screen on a large distance. 1. Drawgeometry slits and viewing screen 2. What is the approximate expression for sinO in terms of distance and location on the maxima screen? 3. When it is done with green laser spacing is 6 mm. what is the wavelength? 4. human can see 500 to 700 nm and if white...
1a. Coherent red light is shone on a pair of slits separated by d, and on...
1a. Coherent red light is shone on a pair of slits separated by d, and on a grating of many slits, each neighboring pair also separated by d. The locations of bright fringes are... a. shifted to smaller angles for the double-slit b. the same for both c. shifted to larger angles for the double slit 1b. Red light and green laser light illuminate a diffraction grating simultaneously. The distance between red and green maxima on a distant screen in...
1. Laser beam with wavelength 632.8 nm is aimed perpendicularly at opaque screen with two identical...
1. Laser beam with wavelength 632.8 nm is aimed perpendicularly at opaque screen with two identical slits on it, positioned horizontally, and close enough to each other so that both of them fall in the beam. A precise positioning shield is used to cover alternatively one of the slits, while the other remains open. On an observation screen positioned 1 meter further from the opaque screen, the diffraction patterns from the independent slit illumination were found identical, with minima 4.0...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT