Question

The equation for wavelength from a double-slit experiment uses the simplification that Θ is small so...

The equation for wavelength from a double-slit experiment uses the simplification that Θ is small so that sin Θ = tan Θ. Up to what angle is this a good approximation when your data has two significant figures?

Homework Answers

Answer #1

Formula for wavelength from a double slit experiment is given as

  

Given that angle is so small that  

Now we know that

yn is position of nth maxima

L is distance between slit and screen

For a small angle , can be a good approximation only till when angle is equal to 0.2 or 0.25(in radian) because after these values of angle can not be equal to , their values changes when we further increases the angle.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced...
With a monochromatic light of wavelength ?? = 532 nm A double-slit interference pattern is produced on a screen as shown in the picture. The slit separation ?? is 0.10 mm, and the slit–screen separation ?? is 50 cm. Assume that the angle θ (from the slit center to the maxima and minima) small enough to permit use of the approximations sin θ ≈ tan θ ≈ θ, in which θ is expressed in radian measure. a. A strip of...
Consider a double slit experiment. 1) For light of 650 nm, a distance d between two...
Consider a double slit experiment. 1) For light of 650 nm, a distance d between two narrows slits of 0.08 mm, and a screen placed one meter away, what is the position of and angle to the first maximum, m=1, from the center.   Calculate both using the small angle approximation and exactly. 2) How would a +10 nm uncertainty on the wavelength made the position of the first maximum from the center vary.
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100...
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a) How wide on the screen is the central bright fringe? (b) What is the distance on the screen between first-order and second-order bright fringes? (c) What is the angular separation (in radians) between the central maximum and the first-order maximum?   
A double slit experiment produces an interference pattern on a screen 2.8 m away from the...
A double slit experiment produces an interference pattern on a screen 2.8 m away from the slits. Light of wavelength = 480 nm falls on the slits from a distant source. The distance between adjacent bright fringes is 5.8 mm. a) find the distance between the two slits. Express your answer using 3 significant figures. b) determine the distance to the 6th order dark fringe from the central fringe. Express your answer using three significant figures.
In an experiment, blue light with a wavelength of 645nm is shone through a double-slit and...
In an experiment, blue light with a wavelength of 645nm is shone through a double-slit and lands on a screen. If the distance from the central fringe to the fourth order bright fringe is 8.6cm at an angle of 3.3o , how far away is the screen placed?
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? The distance between maxima increases. Not enough information given. The distance between maxima stays the same. The distance between maxima decreases.
In a double-slit experiment, if the slit separation is increased by a factor of two, what...
In a double-slit experiment, if the slit separation is increased by a factor of two, what happens to the interference pattern shown on the screen? What happens if the wavelength is halved? What happens if the distance to the screen is double? Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing...
In a double-slit interference experiment, the slit separation is 2.29 μm, the light wavelength is 532...
In a double-slit interference experiment, the slit separation is 2.29 μm, the light wavelength is 532 nm, and the separation between the slits and the screen is 4.42 m. (a) What is the angle between the center and the third side bright fringe? If we decrease the light frequency to 94.8% of its initial value, (b) does the third side bright fringe move along the screen toward or away from the pattern's center and (c) how far does it move?
(8.0.10) In class we showed that intensity distribution for single slit diffraction is given by I(θ)...
(8.0.10) In class we showed that intensity distribution for single slit diffraction is given by I(θ) = I(0) [sin( β/ 2)/( β/2)]. ( β = ka sin(theta) , "a" is the slit width and k = 2π/λ ). (a) Show that the maxima in the diffraction pattern occur at θ for which tan( β/ 2) = β/2. (b) An obvious solution to this equation is β = 0, which corresponds to the central maximum. By sketching the functions tan(β/2) and...
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits....
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits. Light of wavelength λ= 520 nm n m  falls on the slits from a distant source. The distance between adjacent bright fringes is 7.2 mm m m . Part A Find the distance between the two slits. Express your answer using three significant figures. Part B Determine the distance to the 5th order dark fringe from the central fringe. Express your answer using...