Question

15) The Earth's surface gravity famously has a value of about g=9.8 m/s2. Use the Law...

15) The Earth's surface gravity famously has a value of about g=9.8 m/s2. Use the Law of Equilibrium to figure out the gravitational acceleration in low orbit, at an altitude of about 1700 km. The Earth's mass is about 6×1024 kg and its radius is about 6.4×106 meters. Answer:

16) Imagine a planet whose surface gravity is only a seventh. If its radius is 9.14×105 m, what is the planet's mass? Answer:

Homework Answers

Answer #1

15. We use the following formula,

16. let the mass of planet X be m and its radius be r, so we have

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface....
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface. What is the period of the satellite in hours? (Earth radius 6.378×1066.378×106 m, Earth mass 5.97×10245.97×1024 kg, Universal Gravitational constant G=6.67×10−11m3kg−1s−2G=6.67×10−11m3kg−1s−2 ).
On the Earth surface, the gravitatioal acceleration g = 9.8 m/s2 . How many km above...
On the Earth surface, the gravitatioal acceleration g = 9.8 m/s2 . How many km above the Earth's surface will the gravitational acceration be 3.7 m/s2 ? The Earth's radius is 6400 km.
A satellite circles the earth in an orbit whose radius is 3.14 times the earth's radius....
A satellite circles the earth in an orbit whose radius is 3.14 times the earth's radius. The earth's mass is 5.98 x 1024 kg, and its radius is 6.38 x 106 m. What is the period of the satellite? Two newly discovered planets follow circular orbits around a star in a distant part of the galaxy. The orbital speeds of the planets are determined to be 44.6 km/s and 59.9 km/s. The slower planet's orbital period is 8.88 years. (a)...
1) Two celestial objects are in space: one with a mass of 8.22 x 109 kg...
1) Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, what is the magnitude of the force of attraction (in newtons) between the objects? Round to the nearest integer. 2) If the planet Mars has a radius of 3.396 x 106 meters and a mass of 6.42 x 1023 kg, what will its free-fall...
A space elevator has an altitude above the Earth's surface of 40,000km. What would be the...
A space elevator has an altitude above the Earth's surface of 40,000km. What would be the kinetic energy of a 1kg mass at the end of our space elevator? What would be the gravitational potential energy of that mass? If the 1kg object fell way down to the Earth's surface, what would be its speed just before impact? (The radius of Earth is 6.4 x 106m)
A planet has a mass about 16 times the Earth's mass, and its radius is equal...
A planet has a mass about 16 times the Earth's mass, and its radius is equal to about 4.5 Earth's radius. (a) By setting up ratios with the corresponding Earth values, find the acceleration due to gravity at the surface of the planet. (b) Ignoring the rotation of the planet, find the minimum escape speed from the planet.
(A) Calculate the acceleration of gravity, gC, on Ceres Apply the kinematics displacement equation to the...
(A) Calculate the acceleration of gravity, gC, on Ceres Apply the kinematics displacement equation to the falling rock. (1) Δx = 1/2at2 + v0t Substitute Δx = -10.0 m, v0 = 0, a = -gC, and t = 8.06 s, and solve for the gravitational acceleration on Ceres, gC. -10.0 m = -1/2gC(8.06 s)2 → gC = 0.308 m/s2 (B) Find the mass of Ceres. Equate the weight of the rock on Ceres to the gravitational force acting on the...
NASA launches a satellite into orbit at a height above the surface of the Earth equal...
NASA launches a satellite into orbit at a height above the surface of the Earth equal to the Earth's mean radius. The mass of the satellite is 830 kg. (Assume the Earth's mass is 5.97 1024 kg and its radius is 6.38 106 m.) (a) How long, in hours, does it take the satellite to go around the Earth once? h (b) What is the orbital speed, in m/s, of the satellite? m/s (c) How much gravitational force, in N,...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
The International Space Station (ISS) orbits 400 km above the surface of the Earth. The mass...
The International Space Station (ISS) orbits 400 km above the surface of the Earth. The mass of the ISS is 419,455 kg (source: NASA website), the mass of the Earth is 5.98×1024 kg, and the radius of the Earth is 6.37×106 m. Calculate the gravitational force exerted by the Earth on the ISS. Is the gravitational force exerted by the ISS on the Earth greater, the same, or less than your answer in part (a)? Explain why. Calculate the speed...