Question

Mechanic Physics:

The position of a particle moving along the *x* axis is
given in centimeters by *x* = 9.67 + 1.74
*t*^{3}, where *t* is in seconds. Calculate
**(a)** the average velocity during the time interval
*t* = 2.00 s to *t* = 3.00 s; **(b)**
the instantaneous velocity at *t* = 2.00 s;
**(c)** the instantaneous velocity at *t* =
3.00 s; **(d)** the instantaneous velocity at
*t* = 2.50 s; and **(e)** the instantaneous
velocity when the particle is midway between its positions at
*t* = 2.00 s and *t* = 3.00 s.

include units for each part

Answer #1

The position of a particle moving along the x axis is
given in centimeters by x = 9.31 + 1.02
t3, where t is in seconds. Calculate
(a) the average velocity during the time interval
t = 2.00 s to t = 3.00 s; (b)
the instantaneous velocity at t = 2.00 s;
(c) the instantaneous velocity at t =
3.00 s; (d) the instantaneous velocity at
t = 2.50 s; and (e) the instantaneous
velocity when the particle is...

The position of a particle moving along the x axis is
given in centimeters by x = 9.58 + 1.68
t3, where t is in seconds. Calculate
(a) the average velocity during the time interval
t = 2.00 s to t = 3.00 s; (b)
the instantaneous velocity at t = 2.00 s;
(c) the instantaneous velocity at t =
3.00 s; (d) the instantaneous velocity at
t = 2.50 s; and (e) the instantaneous
velocity when the particle is...

The position of a particle moving along the x axis is given in
centimeters by x = 9.16 + 1.52 t3, where t is in seconds. Calculate
(a) the average velocity during the time interval t = 2.00 s to t =
3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the
instantaneous velocity at t = 3.00 s; (d) the instantaneous
velocity at t = 2.50 s; and (e) the instantaneous velocity when the
particle is...

The position of a particle moving along the x axis is
given in centimeters by x = 9.18 + 1.66
t3, where t is in seconds. Calculate
(a) the average velocity during the time interval
t = 2.00 s to t = 3.00 s; (b)
the instantaneous velocity at t = 2.00 s;
(c) the instantaneous velocity at t =
3.00 s; (d) the instantaneous velocity at
t = 2.50 s; and (e) the instantaneous
velocity when the particle is...

The position of a particle moving along the x axis is
given in centimeters by x = 9.75 + 2.50t
3, where t is in seconds. Consider the time
interval t = 2.00 s to t = 3.00 s.
(a) Calculate the average velocity.
(b) Calculate the instantaneous velocity at t = 2.00
s.
(c) Calculate the instantaneous velocity at t = 3.00
s.
(d) Calculate the instantaneous velocity at t = 2.50
s.
(e) Calculate the instantaneous velocity when...

please do 1,2 and 3 thanks
1.The position of a particle moving along the x axis is
given in centimeters by x = 9.12 + 1.75
t3, where t is in seconds. Calculate
(a) the average velocity during the time interval
t = 2.00 s to t = 3.00 s; (b)
the instantaneous velocity at t = 2.00 s;
(c) the instantaneous velocity at t =
3.00 s; (d) the instantaneous velocity at
t = 2.50 s; and (e) the...

The position of a particle moving with constant acceleration is
given by x(t) = 2t2 +
8t + 4 where x is in meters and t is in
seconds.
(a) Calculate the average velocity of this particle between
t = 6 seconds and t = 9 seconds.
(b) At what time during this interval is the average
velocity equal to the instantaneous velocity?

The position of a particle moving along the x axis is given in
meters by x = 3.0t2 – 1.0t3, where t is in
seconds. (a.) At what time does the particle reach its maximum
positive x position? (b.) What total length of path does the
particle cover in the first 4.0 sec? (c.) What is its displacement
during the first 4.0 sec? (d.) What is the particle’s speed at the
end of the first 4 sec? (e.) What is...

A particle moves along the x axis. It is initially at the
position 0.150 m, moving with velocity 0.080 m/s and acceleration
-0.340 m/s2. Suppose it moves with constant acceleration for 5.60
s. (c) Find its position (d) Find its velocity at the end of this
time interval.

The position of a particle moving along the x axis
depends on the time according to the equation x =
ct2 − bt3, where x
is in meters and t in seconds.
For the following, let the numerical values of c and
b be 5.1 and 1.5, respectively. (For vector quantities,
indicate direction with the sign of your answer.)
(c) At what time does the particle reach its maximum positive
x position? From t = 0.0 s to t =...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 10 minutes ago

asked 13 minutes ago

asked 28 minutes ago

asked 36 minutes ago

asked 43 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago