Question

A ball is attached to one end of a wire, the other end being fastened to...

A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest (see the drawing). It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.7 kg and 2.4 kg, and the length of the wire is 1.13 m. Find the velocity (magnitude and direction) of the ball (a) just before the collision, and (b) just after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A steel ball of mass 0.260 kg is fastened to a cord that is 32.0 cm...
A steel ball of mass 0.260 kg is fastened to a cord that is 32.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 3.60 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...
A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m...
A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m long and fixed at the far end. The ball is released when the cord is horizontal. At the bottom of its path, the ball strikes a m2=1.5 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find the speed of the steel ball immediately before the collision (v-before) and the steel block immediately after the collision (v-after) in m/s....
A 200 g rubber ball is attached to a 1.0 m long string and released from...
A 200 g rubber ball is attached to a 1.0 m long string and released from an angle (theta). It swings down and at the very bottom has a perfectly elastic collision with a 1.0 kg block. The block is resting on a frictionless surface and is connected to a 20 cm long spring with spring constant 2000 N/m. After the collision, the spring compresses a maximum distance of 3.0 cm. From what angle was the ball released?
Starting with an initial speed of 4.36 m/s at a height of 0.100 m, a 1.74-kg...
Starting with an initial speed of 4.36 m/s at a height of 0.100 m, a 1.74-kg ball swings downward and strikes a 5.65-kg ball that is at rest, as the drawing shows. (a) Using the principle of conservation of mechanical energy, find the speed of the 1.74-kg ball just before impact. (b) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 1.74-kg ball just after the collision. (c) Assuming that the collision is elastic, find...
Starting with an initial speed of 3.77 m/s at a height of 0.126 m, a 1.25-kg...
Starting with an initial speed of 3.77 m/s at a height of 0.126 m, a 1.25-kg ball swings downward and strikes a 5.95-kg ball that is at rest, as the drawing shows. (a) Using the principle of conservation of mechanical energy, find the speed of the 1.25-kg ball just before impact. (b) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 1.25-kg ball just after the collision. (c) Assuming that the collision is elastic, find...
Starting with an initial speed of 4.49 m/s at a height of 0.148 m, a 2.76-kg...
Starting with an initial speed of 4.49 m/s at a height of 0.148 m, a 2.76-kg ball swings downward and strikes a 5.25-kg ball that is at rest, as the drawing shows. (a) Using the principle of conservation of mechanical energy, find the speed of the 2.76-kg ball just before impact. (b) Assuming that the collision is elastic, find the velocity (magnitude and direction) of the 2.76-kg ball just after the collision. (c) Assuming that the collision is elastic, find...
A .1800 kg block on a frictionless ( u=0) table is attached to one end of...
A .1800 kg block on a frictionless ( u=0) table is attached to one end of a spring with hooke’s constant k=24.0N/m. The other end of the spring is firmly attached to a well . A 0.0350-kg ball is thrown horizontally toward the block at 3.00 m/s . In case of a perfectly elastic collision , what will be the speed of the ball immediately after the collision ? in the case of a perectly inelastic collision , what would...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of the string is then attached to the ceiling in order to create a pendulum. It is then drawn back such that the string makes an angle of 50 degrees relative to the ceiling and then released from rest. How fast is the pendulum traveling when the string makes an angle of 20 degrees relative to the vertical
A ball of mass of 10 kg is attached to one end of a string. The...
A ball of mass of 10 kg is attached to one end of a string. The other end of the string is attached to the ceiling. The ball swings and undergoes 5 full oscillations in 18.00 seconds. (a) Calculate the length of the string. _____ m (b) If the amplitude of motion of the pendulum is 15, calculate the total energy of the oscillator. _____ J
A 0.2000-kg block on a frictionless (? = 0) table is attached to one end of...
A 0.2000-kg block on a frictionless (? = 0) table is attached to one end of a spring with Hooke's constant k = 30.0 N/m. The other end of the spring is firmly attached to a wall. A 0.0250-kg ball is thrown horizontally toward the block at 2.00 m/s. In the case of a perfectly elastic collision, what will be the speed of the ball immediately after the collision? 1.56 m/s What will be the maximum compression of the spring...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT