Question

14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in the process. Indicate the p and V values on the pV diagram. c) Compute the total work done by the gas on the piston during each step of the cycle in L - atm, and the total work done by the gas for one complete cycle. d) Compute the heat added during each step of the cycle in L - atm, and the net heat added for one cycle. Compare the total work done with the net heat added. e) Is this an engine or a refrigerator? If it is an engine, what is its efficiency; if it is a refrigerator, what is its coefficient of performance?

Answer #1

14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are
contained in a cylinder with a piston. The gas first expands
isobarically to 20.0 L (step 1). It then cools at constant volume
back to 275 K (step 2), and finally contracts isothermally back to
10.0 L (step 3).
a) Show the series of processes on a PV diagram.
b) Calculate the temperature, pressure, and volume of the system
at the end of each step in...

10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are
contained in a cylinder with a piston. The gas first expands
isobarically to 20.0 L (step 1). It then cools at constant volume
back to 275 K (step 2), and finally contracts isothermally back to
10.0 L (step 3).
a) Show the series of processes on a pV diagram.
b) Calculate the temperature, pressure, and volume of the system
at the end of each step in...

Please solve the following problems. You must show all work.
1. A 10.0 cm radius piston compresses
a gas isothermally from a height of 15.0 cm to 2.50 cm at a
constant pressure of 2.0 atm.
a) How much heat was added to the
gas?
b) Now if 7000 J of heat is added to
the system and the piston is only moves 5.0 cm up, what is the
change in the internal energy of the system is the pressure...

a machinr carries 2 moles of an ideal diatomic gas
thay is initially at a volume of 0.020 m^3 and a temperature of 37
C is heated to a constant volumes at the temperature of 277 C is
allowed to expand isothermally at the initial pressure, and finally
it is compressed isobarically to its original volume, pressure and
temperature.
1. determine the amount of heat entering the system during the
cycle.
2. calculate the net work affected by the gas...

A cylinder contains an ideal gas at the temperature of 300 K and
is closed by a movable piston. The gas, which is initially at a
pressure of 3 atm occupying a volume of 30 L, expands isothermally
to a volume of 80 L. The gas is then compressed isobarically,
returning to its initial volume of 30 L. Calculate the work done by
gas: a) in isothermal expansion; b) in isobaric compression, c) in
the whole process; and d) Calculate...

A cylinder containing 3.0 moles of a monatomic, ideal gas begins
at a pressure of
2.0 × 105 Pa, with a volume of 0.0365 m3. The
gas then goes through the following three processes, which comprise
a thermal cycle:
The gas is expanded isothermally, to twice its original
volume.
The gas is cooled isobarically, back to its original
volume.
The gas is heated isochorically, up to its original
pressure.
(a) Find the initial temperature of the gas, in
Kelvin.
(b)...

A 29.8 liter container holds 4.71 kg of a diatomic ideal gas
(mass number of the gas 508) at 292 oC . If a piston
changes the volume of the gas isothermally to 467 liter, how much
heat added or removed during this process, in kJ? A positive answer
means heat is added; a negative answer means heat was
removed.

A 59.1 liter container holds 8.74 kg of a diatomic ideal gas
(mass number of the gas 973) at 958 degrees Celcius. If a piston
changes the volume of the gas isothermally to 209 liter, how much
heat added or removed during this process, in kJ?
A positive answer means heat is added; a negative answer means
heat was removed.

2.)1.0 mol sample of an ideal monatomic gas originally at a
pressure of 1 atm undergoes a 3-step process as follows:
(i) It expands
adiabatically from T1 = 588 K to T2 = 389 K
(ii) It is compressed at
constant pressure until its temperature reaches T3 K
(iii) It then returns to its
original pressure and temperature by a constant volume process.
A). Plot these processes on a PV diagram
B). Determine the temperature T3
C)....

A three-step cycle is undergone by 3.8 mol of an ideal diatomic
gas: (1) the temperature of the gas is increased from 230 K to 710
K at constant volume; (2) the gas is then isothermally expanded to
its original pressure; (3) the gas is then contracted at constant
pressure back to its original volume. Throughout the cycle, the
molecules rotate but do not oscillate. What is the efficiency of
the cycle?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 21 minutes ago

asked 27 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago