Question

The neutron star at the center of the Crab Nebula rotates with a period of 0.033...

The neutron star at the center of the Crab Nebula rotates with a period of 0.033 seconds, which is increasing at a rate of 1.26 x 10-5 s/yr.

a) (1 pt) Calculate its angular acceleration.

b) (1 pt) Assuming constant acceleration, how many years will pass from now until it stops spinning?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
neutron stars, such as the one at the center of the crab Nebula, have about the...
neutron stars, such as the one at the center of the crab Nebula, have about the same mass as our sun but a much smaller diameter. if you weigh 690 N on the earth, what would be your weight on the surface of a neutron star has the same mass our sun and a diameter of 190. km? take the mass of the sun to be ms= 1.99x10^30 kg. the gravitational constant to be G= 6.67x10^-11 N.m^2/kg^2. and the acceleration...
Neutron stars, such as the one at the center of the Crab Nebula, have about the...
Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. If you weigh 670 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 21.0 km ? Take the mass of the sun to be ms = 1.99×1030 kg , the gravitational constant to be G...
Neutron stars, such as the one at the center of the Crab Nebula, have about the...
Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun, but a much smaller diameter. If you weigh 650 N on the earth, what would you weigh on the surface of a neutron star that the same mass as our sun and a diameter of 20.0 km?
Neutron stars, such as the one at the center of the Crab Nebula, have about the...
Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun but a much smaller diameter. If you weigh 690 N on the earth, what would be your weight on the surface of a neutron star that has the same mass as our sun and a diameter of 21.0 km ? Take the mass of the sun to be ms = 1.99×1030 kg , the gravitational constant to be G...
Neutron stars, such as the one at the center of the Crab Nebula, have about the...
Neutron stars, such as the one at the center of the Crab Nebula, have about the same mass as our sun, but a much smaller diameter. Part A If you weigh 700 N on the earth, what would you weigh on the surface of a neutron star that has the same mass as our sun and a diameter of 20.0 km?
46.. The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms....
46.. The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms. It is estimated to have an equatorial radius of 15 km, about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5 × 1010 s in the future. Assuming it is slowing with a constant angular acceleration, what is the tangential acceleration of an object on the neutron star’s equator? 4.8 ×...
A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there...
A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there being one such pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. At present, the pulsar in the central region of the Crab nebula has a period of rotation of T = 0.16000000 s, and this is observed to be increasing at the rate of 0.00000943 s/y. What is the angular velocity of...
A pulsar is a rapidly rotating neutron star that emits a radio beam the way a...
A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0833 s that is increasing at the rate of 1.89 x 10-6 s/y. (a) What is the pulsar's angular acceleration α? (b) If α...
7) A disk is initially spinning about its center at 18 rad/s counter-clockwise and a constant...
7) A disk is initially spinning about its center at 18 rad/s counter-clockwise and a constant angular acceleration of 2.9 rad/s2 is applied to it clockwise. How many revolutions does it make before it stops?
7) A disk is initially spinning about its center at 17 rad/s counter-clockwise and a constant...
7) A disk is initially spinning about its center at 17 rad/s counter-clockwise and a constant angular acceleration of 2.9 rad/s2 is applied to it clockwise. How many revolutions does it make before it stops?