Question

An unpolarized light beam of 800 W/m2 is incident on an ideal pair of crossed linear...

An unpolarized light beam of 800 W/m2 is incident on an ideal pair of crossed linear polarizers. Crossed polarizers indicate that the transmission axes of the polarizers are at 900 to one another. Now, a third polarizer is inserted between the other two with its transmission axis at 450 to that of each of the others. Determine the emerging intensity
a) before and
b) after the insertion of the third polarizer c) explain the results of parts a) and b).

Homework Answers

Answer #1

(a) when they are at 900 to each other, emerging intensity I = 800*(cos90)^2 = 0

(b) a third polarizer is inserted between the other two with its transmission axis at 450 to that of each of the others, then emerging intensity I = 800*(cos45)^2*(cos45)^2 = 200W/m2

(c) In a all Intensity is zero because of crossed linear polarizers as their transmission axes are at 900 to one another, and the component in this direction is 0. But in b, they are at 450 to that of each of the others so that some part is always passed and Intensity is only reduced.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A beam of initially unpolarized light passes through a sequence of three ideal polarizers. The angle...
A beam of initially unpolarized light passes through a sequence of three ideal polarizers. The angle ϕ12 between the axes of the first and second polarizers is 21.3∘, and the angle ϕ23 between the axes of the second and third polarizers is 54.5∘. What is the ratio of the intensity I3 of light emerging from the third polarizer to the intensity I0 of light incident on the first polarizer?
A beam of initially unpolarized light passes through a sequence of three ideal polarizers. The angle...
A beam of initially unpolarized light passes through a sequence of three ideal polarizers. The angle ?12 between the axes of the first and second polarizers is 21.5∘, and the angle ?23 between the axes of the second and third polarizers is 53.3∘. What is the ratio of the intensity ?3I3 of light emerging from the third polarizer to the intensity ?0I0 of light incident on the first polarizer? ?3/?0=
Unpolarized light with an intensity of 510 W / m2 is incident on a polarizer with...
Unpolarized light with an intensity of 510 W / m2 is incident on a polarizer with an unknown axis. The light then passes through a second polarizer with has an axis which makes an angle of 83.0° with the vertical. After the light passes through the second polarizer, its intensity has dropped to 164 W / m2. What is the angle between the axes of the polarizers? (Please provide an explanation along with use of equations. Thank you.)
Unpolarized light of intensity 400 W/m2 is normally incident on a system of two polarizers. The...
Unpolarized light of intensity 400 W/m2 is normally incident on a system of two polarizers. The first polarizer's transmission axis is oriented vertically and the second polarizer's transmission axis makes an angle θ with respect to the vertical. The light emerging from the system has an intensity of 150 W/m2. What is the angle θ of the second polarizer. A. 41 degrees B. 52 degrees C. 30 degrees D. 68 degrees
Unpolarized light with an intensity of 605 W / m2 is incident on a polarizer with...
Unpolarized light with an intensity of 605 W / m2 is incident on a polarizer with an unknown axis. The light then passes through a second polarizer with has an axis which makes an angle of 72.5° with the vertical. After the light passes through the second polarizer, its intensity has dropped to 132 W / m2. What is the angle between the axes of the polarizers in degrees? What angle from the vertical is the first polarizer's axis? (Assume...
Unpolarized light with an intensity of 680 W / m2 is incident on a polarizer with...
Unpolarized light with an intensity of 680 W / m2 is incident on a polarizer with an unknown axis. The light then passes through a second polarizer with has an axis which makes an angle of 79.5° with the vertical. After the light passes through the second polarizer, its intensity has dropped to 196 W / m2. 1) What is the angle between the axes of the polarizers in degrees? 2) What angle from the vertical is the first polarizer's...
Thanks So much in advance! 1. Unpolarized light with an intensity of 510 W / m2...
Thanks So much in advance! 1. Unpolarized light with an intensity of 510 W / m2 is incident on a polarizer with an unknown axis. The light then passes through a second polarizer with has an axis which makes an angle of 77.5° with the vertical. After the light passes through the second polarizer, its intensity has dropped to 188 W / m2. What is the angle between the axes of the polarizers? 2.Unpolarized light of intensity I0 is incident...
What will be the intensity (irradiance) of the transmitted light when an unpolarized beam of irradiance...
What will be the intensity (irradiance) of the transmitted light when an unpolarized beam of irradiance I0 is incident on four ideal linear polarizers, where the first transmission axis is vertical, the second is inclined at 45o to the vertical, the third is horizontal, and the fourth is 30o to the horizontal. Repeat when the second polarizer is removed without disturbing the first, third, and the fourth.
A vertically polarized beam of light, having intensity 100 W/m^2 , is incident on a stack...
A vertically polarized beam of light, having intensity 100 W/m^2 , is incident on a stack of identical linear polarizers that are arranged one behind the other so that the transmission axis of the first is vertical, the second at 45, the third at 90 with the vertical.1. Find the intensity of the emerging beam, which will be oscillating in a direction perpendicular to the incident one. 2. If we would like to rotate a polarized beam of light through...
A vertically polarized beam of light, having intensity 100 W/m , is incident on a stack...
A vertically polarized beam of light, having intensity 100 W/m , is incident on a stack of identical linear polarizers that are arranged one behind the other so that the transmission axis ∘∘ ofthefirstisvertical,thesecondat45,thethirdat90 withthevertical.(i)Findtheintensity of the emerging beam, which will be oscillating in a direction perpendicular to the incident one. ∘ (ii) If we would like to rotate a polarized beam of light through an angle 90 , we can use a similar stack with N polarizers. What is...