Question

A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A car of equal mass...

A 1000-kg car approaches an intersection traveling north at 20.0 m/s.

A car of equal mass approaches the same intersection traveling east at 22.0 m/s.

The two cars collide at the intersection and lock together.

Ignoring any external forces that act on the cars during the collision, what is the velocity ,aka, magnitude and direction, of the cars immediately after collision?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1800-kg car approaches an intersection traveling north at 20.0 m/s. A 1600-kg car approaches the...
A 1800-kg car approaches an intersection traveling north at 20.0 m/s. A 1600-kg car approaches the same intersection traveling east at 10.0 m/s. The two cars collide at the intersection and lock together. Ignoring any external forces that act on the cars during the collision, what is the velocity of the cars immediately after the collision?
A 2000-kg car approaches an intersection traveling north (y-direction) at 12.0 m/s. A 2400-kg car approaches...
A 2000-kg car approaches an intersection traveling north (y-direction) at 12.0 m/s. A 2400-kg car approaches the same intersection traveling east (x-direction) at 10.0 m/s. The two cars collide at the intersection and lock together. Ignoring any external forces that act on the cars during the collision, what is the speed of the cars immediately after the collision? At what angle (relative to the x-axis) do the cars travel immediately after the collision? At what angle from the x-axis does...
Car A has a mass of 2000 kg and approaches an intersection with a velocity of...
Car A has a mass of 2000 kg and approaches an intersection with a velocity of 38 m/s directed to the east. Car B has a mass of 3500 kg and approaches the intersection with a velocity of 53 m/s directed 63° north of east. The two cars collide and stick together after the collision. Calculate the velocity after the collision.
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The...
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The second car is traveling north at 24 m/s. They both collide and violently stick together. Immediately after the collision they are moving
A car with a mass of 1,400 kg and a speed of 15 m/s heading north...
A car with a mass of 1,400 kg and a speed of 15 m/s heading north approaches an intersection. At the same time, a minivan with a mass of 1,800 kg and speed of 22 m/s heading east is also approaching the intersection. The car and the minivan collide and stick together. What is the velocity of the wrecked vehicles just after the collision? Ignore friction between the tires and the surface of the road. (Enter the magnitude in m/s...
Two identical cars collide at an intersection(m=1500kg). Car 1 is traveling east with a speed of...
Two identical cars collide at an intersection(m=1500kg). Car 1 is traveling east with a speed of 16 m/s and car 2 is traveling north with a speed of 12 m/s. Immediately after the collison, car 1 travels with a speed of 8 m/s in a direction 60 north of east. The cars do not stick together. (a) What is the speed and direction of travel for car 2 after the collision? (b) What is the change in kinetic energy of...
Two cars approach an ice-covered intersection. One car, of mass 1.21 X 10^3 kg, is initially...
Two cars approach an ice-covered intersection. One car, of mass 1.21 X 10^3 kg, is initially traveling north at 12.1 m/s. The other car, of mass 1.62 X 10^3 kg, is initially traveling east at 12.1 m/s. The cars reach the intersection at the same instant, collide, and move off coupled together. Find the velocity of the center of mass of the two-car system just after the collision. magnitude: ______ direction: _____ north of east
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
a car (m1=2000kg) is traveling east with a velocity of 20i m/s. this car collieds with...
a car (m1=2000kg) is traveling east with a velocity of 20i m/s. this car collieds with a second car (m2=1500kg) that is traveling north with a velocity 20j m/s. these 2 cars tangle together when they collide. what was the total kinetic energy before the collision? what is the magnitude of the momentum of the 2 cars (as 1 system)? what is the speed of the combined mass just after the collision? what is the direction traveled in degrees?
Consider the collision of a 1500-kg car traveling east at 20.0 m/s (44.7 mph) with a...
Consider the collision of a 1500-kg car traveling east at 20.0 m/s (44.7 mph) with a 2000-kg truck traveling north at 25 m/s (55.9 mph). The cars lock together in such a way as to prevent them from separating or rotating significantly. One second before the collision, the car is located at position (x,y) = (-20,0) m and the truck is located at position (x,y) = (0,-25) m. Part a) Calculate the x-coordinate of the center of mass of the...