Question

A spring has a spring constant of 250 N / m and has a bound mass...

A spring has a spring constant of 250 N / m and has a bound mass of 100 grams. The spring is stretched by 40 cm. Determine:
a) the period of oscillation.
b) position for the time of 0.045 seconds.

2. For the spring of Problem 1, calculate
a) the mechanical energy.
b) the two positions where the mass has a speed of 5.0 m / s

Homework Answers

Answer #1

Anvular frequency of syatem

w^2 = k/m

w^2 = 250 / 0.1

w = 50 rad/s

============

a)

w = 2"pi / T

50 = 2 pi / T

T = 0.1256 s

============

b)

Instantaneous position

x = A cos ( wt)

x = 0.4 cos ( 50 t)

At t = 0.045 s

x = - 0.251 m

============

c)

Mechanical energy

E= 0. 5 k x^2 = 20 J

=============

d)

Using energy conservation

0.5 k x^2 = 0.5 k a^2 - 0.5 m v^2

250 x^2 = 250* 0.4^2 - 0.1* 5^2

x = ± 0.387 m

============

Do comment in case any doubt will reply for sure, goodluck

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. (6 pts.) A spring has a spring constant of 250 N / m and has...
1. (6 pts.) A spring has a spring constant of 250 N / m and has a tied mass of 100 grams. The spring is stretched by 40 cm. Determine: a) the period of oscillation. b) position for the time of 0.045 seconds. 2. (6 pts.) For the spring of Problem 1, calculate a) the mechanical energy. b) the two positions where the mass has a speed of 5.0 m / s
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the...
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the equilibrium position. a) What is the magnitude of the spring force at x = 20 cm? b) If a 5 kg mass is attached to the spring, what will the maximum acceleration be if the spring is released from the x = 20 cm stretched position? c) Will the acceleration be the same as the spring passes the x = 10 cm position? If...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
Part A A block of unknown mass is attached to a spring with a spring constant...
Part A A block of unknown mass is attached to a spring with a spring constant of 5.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 28.0 cm/s. (a) Calculate the mass of the block. ________kg (b) Calculate the period of the motion. ________s (c) Calculate the maximum acceleration of the block. ________m/s2 Part B A block-spring...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0...
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 80 cm/s. What is the oscillation amplitude? b.) A 200 g mass is oscillating on a spring with a spring constant of 4.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 50 cm/s. What is its maximum speed?
A student stretches a spring, attaches a 1.70 kg mass to it, and releases the mass...
A student stretches a spring, attaches a 1.70 kg mass to it, and releases the mass from rest on a frictionless surface. The resulting oscillation has a period of 0.530 s and an amplitude of 26.0 cm. Determine the oscillation frequency, the spring constant, and the speed of the mass when it is halfway to the equilibrium position. (a) the oscillation frequency (in Hz) Hz (b) the spring constant (in N/m) N/m (c) the speed of the mass (in m/s)...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?