Question

Atom 1 of mass 30.9 u and atom 2 of mass 32.2 u are both singly...

Atom 1 of mass 30.9 u and atom 2 of mass 32.2 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 7.40 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.570 T. What is the distance Δx between the points where the ions strike the detector?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. An electron is moving through a magnetic field whose magnitude is 8.99 × 10-4 T....
1. An electron is moving through a magnetic field whose magnitude is 8.99 × 10-4 T. The electron experiences only a magnetic force and has an acceleration of magnitude 3.22 × 1014 m/s2. At a certain instant, it has a speed of 8.44 × 106 m/s. Determine the angle (less than 90o) between the electron's velocity and the magnetic field. 2.Suppose that an ion source in a mass spectrometer produces doubly ionized gold ions (Au2+), each with a mass of...
Problem 2. The isotopes magnesium-24 (mass 24 amu) and magnesium-26 (mass 26 amu) are to be...
Problem 2. The isotopes magnesium-24 (mass 24 amu) and magnesium-26 (mass 26 amu) are to be separated using a mass spectrometer in which the magnetic field magnitude is 0.577 T. Both are singly ionized (charge e). What is the minimum value of the potential difference V through which these ions must be accelerated if the separation distance between them on the detector screen must be 2.60 mm? [Hint: we showed in class that the orbital radius of a particle of...
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a...
A singly charged 7Li ion has a mass of 1.16  10-26 kg. It is accelerated through a potential difference of 531 V and subsequently enters a uniform magnetic field of magnitude 0.366 T perpendicular to the ion's velocity. Find the radius of its path.
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through...
A singly charged 7Li ion has a mass of 1.16 10-26 kg. It is accelerated through a potential difference of 485 V and subsequently enters a uniform magnetic field of magnitude 0.422 T perpendicular to the ion's velocity. Find the radius of its path.
Your forensic chemistry group, working closely with local law enforcement agencies, has acquired a mass spectrometer...
Your forensic chemistry group, working closely with local law enforcement agencies, has acquired a mass spectrometer similar to that discussed in the text. It employs a uniform magnetic field that has a magnitude of 0.68 T. To calibrate the mass spectrometer, you decide to measure the masses of various carbon isotopes by measuring the position of impact of the various singly ionized carbon ions that have entered the spectrometer with a kinetic energy of 23 keV. A wire chamber with...
Your forensic chemistry group, working closely with local law enforcement agencies, has acquired a mass spectrometer...
Your forensic chemistry group, working closely with local law enforcement agencies, has acquired a mass spectrometer similar to that discussed in the text. It employs a uniform magnetic field that has a magnitude of 0.68 T. To calibrate the mass spectrometer, you decide to measure the masses of various carbon isotopes by measuring the position of impact of the various singly ionized carbon ions that have entered the spectrometer with a kinetic energy of 23 keV. A wire chamber with...
singly charged uranium-238 ions are accelerated through a potential difference of 2.00KV and wnter a uniform...
singly charged uranium-238 ions are accelerated through a potential difference of 2.00KV and wnter a uniform magnetic field of magnitude 1.20 T directed perpendicular to their velocities. Significance of this problem: 99% of all uranium that comes out of the ground (uranium mine) is U238. But it is U235 that is used for nuclear power plants (3~6% U235) and nuclear weapons (~90% U235). So the concentration of U235 must be increased (enriched). The concentration of U235 is what must be...
A certain commercial mass spectrometer is used to separate uranium ions of mass 3.92 × 10-25...
A certain commercial mass spectrometer is used to separate uranium ions of mass 3.92 × 10-25 kg and charge 3.20 × 10-19 C from related species. The ions are accelerated through a potential difference of 109 kV and then pass into a uniform magnetic field, where they are bent in a path of radius 1.13 m. After traveling through 180° and passing through a slit of width 1.19 mm and height 0.879 cm, they are collected in a cup. (a)...
A mass spectrometer is a device for separating particles of different masses from a mixture. For...
A mass spectrometer is a device for separating particles of different masses from a mixture. For example, the technology is used to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. A mass spectrometer consists of three sections: The accelerator The velocity selector The magnetic chamber (1) Accelerator (acc): In the accelerator, there is only an uniform Electric field due to a potential difference Vacc across two vertical plates separated from a...
A mass spectrometer is a device for separating particles of different masses from a mixture. For...
A mass spectrometer is a device for separating particles of different masses from a mixture. For example, the technology is used to investigate qualitative and quantitative changes within thousands of biologically active components such as proteins, lipids and metabolites. A mass spectrometer consists of three sections: The accelerator The velocity selector The magnetic chamber (1) Accelerator (acc): In the accelerator, there is only an uniform Electric field due to a potential difference Vacc across two vertical plates separated from a...