Question

To determine the peak wavelength of the blackbody radiation emitted by a person you would need...

To determine the peak wavelength of the blackbody radiation emitted by a person you would need to know which of the following?

Group of answer choices

A. The mass of the person.

B. The speed of the person.

C. The electrical charge on the person.

D. The person's body temperature.

Homework Answers

Answer #1

According to Wien's Law:

The wavelength at which the intensity of radiation is maximum is inversely proportional to the temperature of the body.

.

Answer: (D) To determine the peak wavelength of the blackbody radiation emitted by a person we would need to know the person's body temperature.

A) From mass, we can determine weight of the person.

B) From velocity, we can determine the kinetic energy of the person

C) From the electrical charge, we can determine how much electromagnetic effect it can put on another body.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the wavelength of blackbody radiation emitted from a body at room temperature. To which part...
Determine the wavelength of blackbody radiation emitted from a body at room temperature. To which part of the EM spectrum does this radiation belong?
As the temperature of a backbody increases, the wavelength of the peak in the emitted intensity...
As the temperature of a backbody increases, the wavelength of the peak in the emitted intensity remains the same. shifts to higher values. shifts to lower values. becomes unstable. QUESTION 2 Max Planck discovered the theoretical reasoning necessary to understand the spectrum of the electromagnetic radiation emitted by a blackbody. What was this reasoning based on? A careful consideration of the possible physical effects. Guessing until he found an expression which led to the correct result. Don't select this answer....
Assuming blackbody emission, find the wavelength of peak radiation from the following objects: a) surface of...
Assuming blackbody emission, find the wavelength of peak radiation from the following objects: a) surface of the sun at 5778 K, b) boiling water at 100 degrees C, c) helium at 4 K d) the universe at T=2.725 K. In what region of the electromagnetic spectrum is each?
1. What is the peak wavelength emitted by a star with a surface temperature of 7070...
1. What is the peak wavelength emitted by a star with a surface temperature of 7070 K? Give your answer in nm (1 nm = 10-9 m), but enter only the numerical part in the box. 2. By how much would a star's temperature need to increase in order for its peak wavelength to decrease from 460 to 360 nm? Your answer will be the change in temperature. Give your answer in K, but enter only the numerical part in...
A particular star has a radius of 8.58 ✕ 108 m. The peak intensity of the...
A particular star has a radius of 8.58 ✕ 108 m. The peak intensity of the radiation it emits is at a wavelength of 682 nm. (a) What is the energy (in J) of a photon with this wavelength? J (b) What is the star's surface temperature (in K)? (Round your answer to at least the nearest integer.) K (c) At what rate (in W) is energy emitted from the star in the form of radiation? Assume the star is...
You measure the maximum wavelength of the radiation from a star as 547.0 nm, and the...
You measure the maximum wavelength of the radiation from a star as 547.0 nm, and the radius of the star to be 5.1 ×108m×108m. Find the total power emitted by the star in Watts, assuming it is a perfect black-body emitter. Use 2 sf in your answer. Hint: Use Wien's Law to find the temperature, and then Stefan's Law. You can assume the star is a sphere.
Assuming that your surface temperature is 97.7 F and that you are an ideal blackbody radiator...
Assuming that your surface temperature is 97.7 F and that you are an ideal blackbody radiator (you are close), find (a) the wavelength at which your spectral radiancy is maximum, (b) the power at which you emit thermal radiation in a wavelength range of 1.00 nm at that wavelength, from a surface area of 4.10 cm2, and (c) the corresponding rate at which you emit photons from that area. Using a wavelength of 500 nm (in the visible range), (d)...
1. Why might a stream of red photons not cause an electron to be emitted from...
1. Why might a stream of red photons not cause an electron to be emitted from a gold surface? A. The stream of red photons might not be hitting the surface with enough total energy per second B. An electron absorbs the energy of one photon, and the red photon has too small of a wavelength to deliver enough energy. C. An electron absorbs the energy of one photon, and the red photon has too small of a frequency to...
Betelgeuse Written Homework The spherical star Betelgeuse has the following properties: peak wavelength = 807 nm...
Betelgeuse Written Homework The spherical star Betelgeuse has the following properties: peak wavelength = 807 nm radius = 6.3E11 m mass = 2.31E31 kg distance to Earth = 6.85E18 m emissivity = 1 Determine the following based on the above information and relevant equations: a) Temperature of the light-emitting surface of Betelgeuse, assumed constant (as an aside, note that there isn't really a single temperature of a star). b) Power of Betelgeuse. c) Intensity of light from Betelgeuse reaching Earth...
The wavelength of peak emission from any star is related to the temperature of its photosphere...
The wavelength of peak emission from any star is related to the temperature of its photosphere (i.e., the emitting surface) by Wien’s Law, given by λ = 2,900/T, where λ is the wavelength in micrometers (1 µm = 10-6 m), and T is the temperature of the star in Kelvin (see textbook’s figure 3.27 for help). Answer the following questions using the above equation. 2.1. The most massive star ever observed is a Wolf-Rayet type-star, named R136a1. It is so...