Question

A 0.180-kg ball on the end of a------ meter long cord (neglect the mass of the...

A 0.180-kg ball on the end of a------ meter long cord (neglect the mass of the cord) is swung in a vertical circle. The ball passes the top point of the arc at velocity v2 = 3.88-m/s. The tension at the bottom is FT2 is------- Newtons

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
the figure shows a 3.0 kg ball tied to the end of a 50 cm long...
the figure shows a 3.0 kg ball tied to the end of a 50 cm long string being swung in a circle in a vertical plane at constant speed. The center of the circle is h = 230 cm above the floor. The ball is swung at the minimum speed necessary to make it over the top without the string going slack. If the string is released at the instant the ball is at the top of the loop, how...
A 3970 kg demolition ball swings at the end of a 34.4 m cable on the...
A 3970 kg demolition ball swings at the end of a 34.4 m cable on the arc of a vertical circle. At the lowest point of the swing, the ball is moving at a speed of 2.08 m/s. Determine the tension in the cable.
A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a...
A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a vertical circle. The string can withstand a tension of 15.0 N before breaking. (a) What is the tension in the string when the ball is at the top of the circle if its speed at that point is 3.50 m/s? _________ N (b) What is the maximum speed the ball can have at the bottom of the circle if the string does not break?...
A mass of 3 kg is connected to a string of length 3.4 meters to form...
A mass of 3 kg is connected to a string of length 3.4 meters to form a yo-yo. It is swung in a vertical circle. The string breaks when the tension in the string is 89 Newtons. It happens to reach this tension on the side of the circle (halfway between the top and bottom) and the mass moves through midair at the velocity it was moving at the side when the string broke. What is the maximum vertical displacement...
A ball swings in a vertical circle at a constant speed at the end of a...
A ball swings in a vertical circle at a constant speed at the end of a 1.5-m-long string. When the ball is at the top of the circle, the tension is 10N, at the bottom the tension is 50N. a) What is the mass of the ball? b) What is the speed of the ball?
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill...
A hollow ball of mass 6.00 kg and radius 0.180 m is rolled up a hill without slipping. If it starts off at the bottom with a linear speed of 7.00 m/s, what vertical height (in m) will it reach?
A pendulum swings through an arc of 90.0° (45.0° on either side of the vertical). The...
A pendulum swings through an arc of 90.0° (45.0° on either side of the vertical). The mass of the bob is 4.10 kg and the length of the suspending cord is 1.70 m. (a) Find the tension in the cord at the end points of the swing.    (b) Find the velocity of the bob as it passes its lowest point and the tension in the cord at this point. velocity = tension =
A 0.50 kg ball that is tied to the end of a 1.0 m light cord...
A 0.50 kg ball that is tied to the end of a 1.0 m light cord is revolved in a horizontal plane with the cord making a 30° angle, with the vertical (See Fig. P7.52.) Figure P7.52 (a) Determine the ball's speed. 1.7 Correct: Your answer is correct. m/s (b) If, instead, the ball is revolved so that its speed is 4.0 m/s, what angle does the cord make with the vertical? 61.7 Correct: Your answer is correct. ° (c)...
A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m...
A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m long and fixed at the far end. The ball is released when the cord is horizontal. At the bottom of its path, the ball strikes a m2=1.5 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find the speed of the steel ball immediately before the collision (v-before) and the steel block immediately after the collision (v-after) in m/s....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT