Question

In the figure, a particle of mass m1 = 0.81 kg is a distance d =...

In the figure, a particle of mass m1 = 0.81 kg is a distance d = 19 cm from one end of a uniform rod with length L = 4.3 m and mass M = 4.3 kg. What is the magnitude of the gravitational force F→ on the particle from the rod?

Homework Answers

Answer #1

Magnitude of gravitational force on the particle from one end of the rod is calculate using below formula

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with mass m1=2 kg is located at x=0 while a particle with mass m2=128...
A particle with mass m1=2 kg is located at x=0 while a particle with mass m2=128 kg is located at x=200 m along the x axis. Somewhere between them is a point where the gravitational force of m1 acting on a mass m0=1 kg is canceled by the gravitational force of m2 acting on that mass. (a) What is the coordinate x of this point? _______ (b) Find the ratio (in terms of integer numbers) of the magnitude of the...
A particle of mass, m1 = 2.0 kg with a charge, q1 = -3.1 x 10-10...
A particle of mass, m1 = 2.0 kg with a charge, q1 = -3.1 x 10-10 C is separated by 0.50 m from another particle of mass, m2 = 2.3 kg, and a charge, q2 = -2.1 x 10-11C. What is the magnitude of gravitational force, electric force, and net force between them? Is the gravitational force between them attractive or repulsive? Is the electric force between them attractive or repulsive? Is the net force between them attractive or repulsive?
A solid sphere of uniform density has a mass of 6.1 × 104 kg and a...
A solid sphere of uniform density has a mass of 6.1 × 104 kg and a radius of 2.7 m. What is the magnitude of the gravitational force due to the sphere on a particle of mass 2.0 kg located at a distance of (a) 5.9 m and (b) 2.1 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance r ? 2.7 m from...
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
The figure shows a ball with mass m = 0.450 kg attached to the end of...
The figure shows a ball with mass m = 0.450 kg attached to the end of a thin rod with length L = 0.415 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
The figure shows a ball with mass m = 0.295 kg attached to the end of...
The figure shows a ball with mass m = 0.295 kg attached to the end of a thin rod with length L = 0.306 m and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically upward position, with zero speed...
Particle 1 has a mass of m1 = 3.30 × 10-6 kg, while particle 2 has...
Particle 1 has a mass of m1 = 3.30 × 10-6 kg, while particle 2 has a mass of m2 = 6.30 × 10-6 kg. Each has the same electric charge. These particles are initially held at rest, and the two-particle system has an initial electric potential energy of 0.140 J. Suddenly, the particles are released and fly apart because of the repulsive electric force that acts on each one (see the figure). The effects of the gravitational force are...
In the Cavendish balance apparatus shown in Figure 13.4 in the textbook, suppose that m1 =...
In the Cavendish balance apparatus shown in Figure 13.4 in the textbook, suppose that m1 = 1.00 kg, m2 = 27.0 kg, and the rod connecting each of the pairs of masses is 28.0 cm long. Once the system reaches equilibrium, each pair of masses, m1 and m2, are separated by a distance of 12.0 cm center-to-center. A) Find the magnitude (in N) of the net force on one of the small masses, m1 B) Find the gravitational torque (about...
A uniform rod of length 50. cm and mass 0.20 kg is placed on a fulcrum...
A uniform rod of length 50. cm and mass 0.20 kg is placed on a fulcrum at a distance of 40. cm from the left end of the rod. At what distance from the right end of the rod should a 0.60 kg mass be hung to balance the rod?
A uniform rod of mass M = 20 kg and length L = 5m is bent...
A uniform rod of mass M = 20 kg and length L = 5m is bent into a semicircle. What is the gravitational force exerted by the rod on a point mass m = 0.1 kg located at the center of the circular arc? If the answers are going to be written please do it legible, thanks
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT