Question

When the gas expands at constant pressure 180 Pa, the increase in volume is 1.5 m3...

When the gas expands at constant pressure 180 Pa, the increase in volume is 1.5 m3 and the heat lost by the gas 300J. Evaluate the change in internal energy?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of...
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of 1.5× 105 Pa at a temperature of 300 K. The cylinder is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K. The change in internal energy of the gas is +6.0× 105 J. How much heat did the gas absorb? a. 1.4E+6 J b....
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant temperature of 675 K. If the initial pressure is 1.00 ∙ 105 Pa, find (a) the work done by the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature...
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature of 730 K. If the initial pressure is 1.02 ? 105 Pa find the following. (a) the work done on the gas J (b) the thermal energy transfer Q J (c) the change in the internal energy J
A gas in a cylinder expands from a volume of 0.150 m^3 to 0.390 m^3 ....
A gas in a cylinder expands from a volume of 0.150 m^3 to 0.390 m^3 . Heat flows into the gas just rapidly enough to keep the pressure constant at 1.90×10^5 Pa during the expansion. The total heat added is 1.15×10^5 J a)Find the change in internal energy of the gas.
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon...
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A.) A gas confined by a piston expands isobarically at 30 kPa. When 24,000 joules of...
A.) A gas confined by a piston expands isobarically at 30 kPa. When 24,000 joules of heat is absorbed by the system, its volume increases from 0.14 m3 to 0.4 m3. What work is done on the system and what is the change in internal energy? Work Done by the System = Joules Internal Energy Change = Joules B.) The volume of a gas decreases from 7 to 4 liters under a constant pressure of one atmosphere. Is the work...
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2...
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2 from a volume of 3.3 m3 to a volume of 1.6 m3. In the process, 74 J is lost by the gas as heat. What are (a) the change in internal energy of the gas and (b) the final temperature of the gas?
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
An ideal gas with γ = 1.400 expands adiabatically from a pressure of 365.0 Pa and...
An ideal gas with γ = 1.400 expands adiabatically from a pressure of 365.0 Pa and a volume of 70.00 m3 , doing 101.0 J of work while expanding to a final volume. What is its final pressure-volume product?