Question

A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick...

A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick of mass 0.125 kg. The meter stick rotates on a frictionless, horizontal table with an angular speed of 6.00 rad/s.

(a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark.

_____ kg · m2/s

(b) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 0-cm mark.

_____ kg · m2/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of mass 0.150 kg. The meterstick rotates on the surface of a frictionless, horizontal table with an angular speed of 6.00 rad/s. (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark. (b) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the...
A particle of mass 0.300 kg is attached to the 100 cm mark of a meter...
A particle of mass 0.300 kg is attached to the 100 cm mark of a meter stick of mass 0.200 kg. The meter stick rotates on a horizontal, frictionless table with an angular speed of 4.00 rad/s.] (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 75.0 cm mark. (b) What is the angular momentum when the stick is pivoted about an axis perpendicular to the table...
A 2.0-m measuring stick of mass 0.215 kg is resting on a table. A mass of...
A 2.0-m measuring stick of mass 0.215 kg is resting on a table. A mass of 0.500 kg is attached to the stick at a distance of 74.0 cm from the center. Both the stick and the table surface are frictionless. The stick rotates with an angular speed of 5.40 rad/s. (a) If the stick is pivoted about an axis perpendicular to the table and passing through its center, what is the angular momentum of the system? kg · m2/s...
Calculate the rotational inertia of a meter stick, with mass 0.633 kg, about an axis perpendicular...
Calculate the rotational inertia of a meter stick, with mass 0.633 kg, about an axis perpendicular to the stick and located at the 27.4 cm mark. (Treat the stick as a thin rod.)
Calculate the rotational inertia of a meter stick with mass m=0.56 kg about an axis perpendicular...
Calculate the rotational inertia of a meter stick with mass m=0.56 kg about an axis perpendicular to set stick and located at the 20 cm mark. (Treat the stick as a thin rod).
1. A uniform meter stick is supported by a knife edge at the 50.0 cm mark...
1. A uniform meter stick is supported by a knife edge at the 50.0 cm mark and has a masse of 4.44 kg hanging from the 11.80 cm mark. A second mass of 7.04 kg should be hung at the _____ cm mark to keep the stick balanced? 2.
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg mass attached to the other. The system rotates at a constant angular speed about a fixed axis perpendicular to the rod that passes through the rod 40.0 cm from the end with the 4.00-kg mass attached. The angular speed of the system is 150 rad/s. a) What is the total moment of inertia of this system (including the rod and two masses) about the...
A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 3.94...
A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 3.94 g coins stacked over the 38.7 cm mark, the stick is found to balance at the 48.7 cm mark. What is the mass of the meter stick?
A -5.00-μC point charge is placed at the 0.0 cm mark of a meter stick and...
A -5.00-μC point charge is placed at the 0.0 cm mark of a meter stick and a 4.00-μC point charge is placed at the 50.0 cm mark. At what point on a line through the ends of the meter stick is the electric field equal to zero?
A meter stick is balanced at its 50.0 cm center of mass. Suppose a 20.0 g...
A meter stick is balanced at its 50.0 cm center of mass. Suppose a 20.0 g mass is now placed at the 40.0 cm position. What torque is being applied by this mass? Given data from ques 1, at what position would a 10.0 g mass have to be placed to achieve equilibrium? Suppose the 10.0 g mass is removed, and an unknown mass is now placed at the 90.0 cm position on the meter stick. Find this unknown mass....