Question

. A Carnot engine has a piston displacement volume of 7.5 liters. The volume at the...

. A Carnot engine has a piston displacement volume of 7.5 liters. The volume at the beginning of heat addition is 1.0 liters, the pressure is 2000 kPa, and the temperature is 900 K. The heat added is 2.2 kJ and the substance is air. Determine the low temperature, TC and the thermal efficiency. 593.3 K    0.34

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
Two kg of air within a piston cylinder assembly execute a carnot power cycle with max...
Two kg of air within a piston cylinder assembly execute a carnot power cycle with max and min temp of 750K and 300K, respectively. The heat transfer to the air during the isothermal expansion is 60KJ. At the end of the isothermal expansion the volume is 0.4m3. Assuming the ideal gas model for air, determine a)the thermal efficiency b)the pressure and volume at the beginning of the isothermal expansion in kpa and m3 respectively. c) the work and heat transfer...
5 kg of air in a piston cylinder assembly undergoes a Carnot power cycle. Heat is...
5 kg of air in a piston cylinder assembly undergoes a Carnot power cycle. Heat is received at temperature?1=727°C and rejected at ?3=27°C.During the heat input process, the pressure changes from ?1=1200kPa to ?2=900kPa, respectively. Assume the air behaves as an ideal gas with constant specific heats. Determine: a.pressures [kPa] at beginning and end of the isothermal heat rejection process (?3,?4) b.heat transfer from high temperature source [kJ] c.thermal efficiency d.net work output for cycle [kJ]
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...
A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]
With a high temperature reservoir at 450 K, a Carnot engine, has an efficiency of 33%....
With a high temperature reservoir at 450 K, a Carnot engine, has an efficiency of 33%. To increase the efficiency to 40%, the temperature of the low temperature reservoir needs to change by how much?
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state...
A Diesel cycle engine is analyzed using the air standard method. Given the conditions at state 1, compression ratio (r), and cutoff ratio (rc) determine the efficiency and other values listed below. Note: The gas constant for air is R=0.287 kJ/kg-K. --Given Values-- T1 (K) = 322 P1 (kPa) = 120 r = 11.5 rc = 1.6 Specific internal energy (kJ/kg) at state 1: 229.86 Relative specific volume at state 1= 520.52 Relative specific volume at state 2= 45.26 Temperature...
An inventor proposes a four-stroke cycle running on helium. The engine has a compression ratio of...
An inventor proposes a four-stroke cycle running on helium. The engine has a compression ratio of 8 and maximum operating temperature of 1,500 K. The atmospheric conditions are temperature of 300 K and pressure of 100 kPa. The processes can be approximated as below: 1- 2 isentropic compression 2- 3 constant volume heat addition 3- 4 isentropic expansion 4- 1 constant pressure heat removal a. Plot P-v and T-s diagrams for this cycle. b. Determine state conditions at the end...
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from...
A heat engine is assumed to operate on a Carnot cycle. It receives 600kJ heat from a high temperature reservoir at 600oC and rejects heat to a low temperature reservoir at 20oC. a. Calculate the thermal efficiency of the cycle. b. What is QL? c. What is the net work produced by this cycle? d. Does this process violate Kelvin-Plank statement? Explain. e. An inventor claimed that he built a heat engine operating between the same reservoirs that give a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT