Question

Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a...

Block 1, with mass m1 and speed 5.4 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2, with mass m2 = 0.65m1. The two blocks then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink...
Object 1, with mass m1 and speed 5.3 m/s, slides along on a frictionless ice rink and then undergoes a one-dimensional elastic collision with a standstill object 2, with mass m2 = 0.44m1. The two objects then slide into a region where the coefficient of kinetic friction is 0.56; there they stop. How far into that region do (a) object 1 and (b) object 2 slide? (c) Assume the collision is inelastic, and that the objects stick together. How far...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor...
Speed amplifier. Block 1 of mass m1 slides along an x axis on a frictionless floor with a speed of Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass m2 = 0.500m1. Next, block 2 undergoes a onedimensional elastic collision with stationary block 3 of mass m3 = 0.500m2. (a) What then is the speed of block 3? (b) Are the kinetic energy, and the momentum of block 3 greater than, less than, or the same...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision...
Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass m2 = 8m1. Prior to the collision, the center of mass of the two-block system had a speed of 4.6 m/s. What is the speed of block 2 after the collision (in m/s)? Sample submission: 8.9
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
In the figure here, a stationary block explodes into two pieces L and R that slide...
In the figure here, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 3.8 kg, encounters a coefficient of kinetic friction μL = 0.56 and slides to a stop in distance dL = 0.48 m. Piece R encounters a coefficient of kinetic friction μR = 0.56 and slides to a stop in distance dR = 0.31 m. What...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of 7.3m/s. It collides inelastically with mass m2=1.7kg and the two blocks stick together. They then slide down a frictionless incline with a Height 95cm. How fast are they going when they reach the bottom of the incline? Part B. If the coefficient of kinetic friction, uk is 0.15 along the surface at the bottom of the ramp. What distance will the blocks side before...
A stationary block of mass 5 kg explodes into two pieces L and R that slide...
A stationary block of mass 5 kg explodes into two pieces L and R that slide across a frictionless floor. The left piece slides across the region with friction and stops, the right piece compresses a spring. Momentum is conserved during the explosion. Piece L has a mass of 2 kg and encounters a flat surface with coefficient of kinetic friction µL = 0.4 and slides to a stop in distance dL = 0.5 m. Piece R slides across the...
A wood block with mass 2 kg slides along the floor. It is given an initial...
A wood block with mass 2 kg slides along the floor. It is given an initial velocity of 10 m/s and comes to a stop after traveling 1.5 m. What is the coefficient of kinetic friction between the block and the floor?
In the figure here, a stationary block explodes into two pieces L and R that slide...
In the figure here, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 2.2 kg, encounters a coefficient of kinetic friction μL = 0.52 and slides to a stop in distance dL = 0.41 m. Piece R encounters a coefficient of kinetic friction μR = 0.33 and slides to a stop in distance dR = 0.44 m. What...