Question

Two objects that are constrained to move in the xy-plane undergo a collision. Object 1 has...

Two objects that are constrained to move in the xy-plane undergo a collision. Object 1 has mass 2.3 kg and its initial momentum just before the collision has the x- and y-components 15.1 kg⋅m/s and -6.9 kg⋅m/s, respectively. Object 2 has mass 4.7 kg and the x- and y-components of its initial momentum are 3.5 kg⋅m/s and 6.5 kg⋅m/s. Immediately after the collision the x- and y-components of object 1’s final momentum are 13.8 kg⋅m/s and 4.3 kg⋅m/s.

a Calculate the final total kinetic energy of the two objects, in joules.

b  Calculate the change in the internal energy of the two objects, in joules.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1...
2 objects, moving in one dimension, undergo an isolated collision. Object 1 has initial velocity 1 m/s. Object 2 has an initial velocity -3 m/s. After the collision, the relative velocity of the 2 objects is vAB=+2 m/s. The reduced mass of the two objects is ⅔ kg. What is the change in total kinetic energy of the entire system during this collision?  Express your answer in units of Joules.
Two rubber objects undergo a collision that we will approximate as being elastic. The first object...
Two rubber objects undergo a collision that we will approximate as being elastic. The first object has mass 12.0 kg, and the second object has mass 12.0 kg. Before the collision, the first object is traveling at 4.00 m/s and the second object is traveling at -4.00 m/s (negative meaning in the opposite direction). What is the velocity of the second object, after the collision?
Two rubber balls undergo an elastic collision. Ball 1 has a mass of 10 kg and...
Two rubber balls undergo an elastic collision. Ball 1 has a mass of 10 kg and an initial velocity of 5 m/s in the positive x direction. Ball 2 has a mass of 10 kg and is stationary.   What is the final velocity of the two balls, v1f, and v2f?
Object A has mass mA = 8 kg and initial momentum A,i = < 19, -5,...
Object A has mass mA = 8 kg and initial momentum A,i = < 19, -5, 0 > kg · m/s, just before it strikes object B, which has mass mB = 11 kg. Just before the collision object B has initial momentum B,i = < 6, 6, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? sys,i = kg ·...
5. [1pt] Consider a perfectly elastic collision between two objects of equal mass. Object 1 is...
5. [1pt] Consider a perfectly elastic collision between two objects of equal mass. Object 1 is initially moving with a velocity v = 3.04 m/s while object 2 is at rest. What are the final velocities after the collision? Enter the final velocity of object 1 first. Answer 1 of 2: Answer 2 of 2: 6. [1pt] If the objects have masses m1 = 1.69 kg and m2 = 4.04 kg, what are the final velocities of the objects after...
Object A has mass mA = 10 kg and initial momentum A,i = < 20, -5,...
Object A has mass mA = 10 kg and initial momentum A,i = < 20, -5, 0 > kg · m/s, just before it strikes object B, which has mass mB = 14 kg. Just before the collision object B has initial momentum B,i = < 3, 5, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? P sys,i = The...
Object A has mass mA = 7 kg and initial momentum A,i = < 22, -6,...
Object A has mass mA = 7 kg and initial momentum A,i = < 22, -6, 0 > kg · m/s, just before it strikes object B, which has mass mB =  10 kg. Just before the collision object B has initial momentum B,i = < 2, 7, 0 > kg · m/s. Consider a system consisting of both objects A and B. What is the total initial momentum of this system, just before the collision? sys,i =   <24,1,0>    kg ·...
1- Calculate the final velocities of two objects given the information. The collision is object 1...
1- Calculate the final velocities of two objects given the information. The collision is object 1 travels towards object two on a flat surface, once colliding the bounce apart. Please note that the collision is elastic, and the force of friction is negligible. The answers show the velocities in m/s in this order v1’; v2’. Object 1 Object 2 Vi (m/s) 5.00 0 m (kg) 1.00 4.50
Two objects of mass 1.7 kg and 2.9 kg move with velocities (2.2, 0.5) and (2.9,...
Two objects of mass 1.7 kg and 2.9 kg move with velocities (2.2, 0.5) and (2.9, 4.0) respectively (the two numbers are the x and y components of the velocity in m/s). The two objects collide and stick together. Find the x and y components of their common final velocity and enter the magnitude (length) of the final velocity in m/s into the answer box.
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the following masses and velocities: M1 = 4.5 kg, v1 = 1.5 m/s @ 140o. M2 = 1.5 kg, v2 = 1 m/s @ 180o. a) Find the velocity of the object after the collision. b) How much kinetic energy was lost in the collision.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT