Question

truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends...

truck with a mass of 1840 kg and moving with a speed of 17.0 m/s rear-ends a 732 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged.

(a)

Calculate the initial momentum of the truck (in kg m/s).

kg m/s

(b)

Calculate the final velocities (in m/s) for the truck and the car.

vtf = m/s vcf = m/s

(c)

Calculate the total momentum (in kg m/s) of the truck AND the car after the collision.

kg m/s

(d)

Did you expect the results that you got for Part (a) and (c)?

Yes, since the collision is inelastic. No, since kinetic energy may not be conserved.     No, since there were no forces acting on either the car or the truck during the collision. Yes, since momentum is conserved in a collision with no external forces acting on the colliding objects.

Homework Answers

Answer #1

D. Yes since momentumnis conserved and there is no external force on the system.

If your query is been resolved please upvote and if you any doubt please comment down below I'll be happy to help. It takes a lot of time and hardwork to answer each question please encourage the effort by upvote/like to answer. Thanks and regards.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A truck with a mass of 1430 kg and moving with a speed of 17.0 m/s...
A truck with a mass of 1430 kg and moving with a speed of 17.0 m/s rear-ends a 821 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. Vcar= ___ m/s Vtruck= ___ m/s
A truck with a mass of 1730 kg and moving with a speed of 14.0 m/s...
A truck with a mass of 1730 kg and moving with a speed of 14.0 m/s rear-ends a 743-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ____m/s vtruck = ____m/s
A truck with a mass of 1420 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1420 kg and moving with a speed of 12.0 m/s rear-ends a 649 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. vcar = _______ m/s vtruck = _______m/s
A 801 kg car stopped at an intersection is rear-ended by a 1550 kg truck moving...
A 801 kg car stopped at an intersection is rear-ended by a 1550 kg truck moving with a speed of 16.0 m/s. If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of both vehicles after the collision. m/s (car) m/s (truck)
A 1700-kg truck and a 1000-kg car are parked with their rear bumpers nearly touching each...
A 1700-kg truck and a 1000-kg car are parked with their rear bumpers nearly touching each other in a level parking lot. Both vehicles have their brakes off so that they are free to roll. A man sitting on the rear bumper of the truck exerts a constant horizontal force on the rear bumper of the car with his feet, and the car accelerates at 1.2 m/s2. Ignore any friction between the tires and the parking lot surface. The direction...
A 1000 kg car travels at 20 m/s and rear ends an 800 kg car at...
A 1000 kg car travels at 20 m/s and rear ends an 800 kg car at rest. If they stick together, what is their final velocity after colliding? A 2 kg block with initial velocity 2 m/s collides with a 4 kg block at rest and rebounds with velocity -0.5 m/s. Was the collision elastic? If not, how much energy was lost?
A 1055-kg van, stopped at a traffic light, is hit directly in the rear by a...
A 1055-kg van, stopped at a traffic light, is hit directly in the rear by a 730-kg car traveling with a velocity of +2.45 m/s. Assume that the transmission of the van is in neutral, the brakes are not being applied, and the collision is elastic. What is the final velocity of each vehicle?
A 1400 kg car at rest at a stop sign is rear ended by a 1860...
A 1400 kg car at rest at a stop sign is rear ended by a 1860 kg truck traveling at a speed of 20.9 m/s. After the collision, the two vehicles are locked together. Alice is moving past the collision site in a frame S' that is traveling at a constant velocity of 6.69 m/s in the direction of travel of the incident truck. (a) Determine the momentum of the vehicles before the collision in Alice's frame. (b) Determine the...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of...
A 1,200-kg car traveling initially with a speed of 25.0 m/s crashes into the rear of a 9,000-kg truck moving in the same direction at 20.0 m/s. The velocity of the car after the collision is 17.5 m/s. a) What is the velocity of the truck right after the collision? b) How much mechanical energy is lost in the collision?
A car and a truck are both travelling with a constant speed of 20 m/s. The...
A car and a truck are both travelling with a constant speed of 20 m/s. The car is 10 m behind the truck. The truck driver suddenly applies his brakes, causing the truck to decelerate at a constant rate of 2 m/s^2. Two seconds later, the driver of the car applies his brakes and just manages to avoid a rear-end collision. Determine the constant rate at which the car decelerated.